Rod-shaped nanocrystalline cellulose (NCC) was prepared from microcrystalline cellulose (MCC) using the purely physical method of high-intensity ultrasonication. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction was used for the characterization of the morphology and crystal structure of the material. The thermal properties were investigated using thermogravimetric analysis. The reinforcement capabilities of the obtained NCC were investigated by adding it to poly(vinyl alcohol) (PVA) via the solution casting method. The results revealed that the prepared NCC had a rod-shaped structure, with diameters between 10 and 20 nm and lengths between 50 and 250 nm. X-ray diffraction results indicated that the NCC had the cellulose I crystal structure similar to that of MCC. The crystallinity of the NCC decreased with increasing ultrasonication time. The ultrasonic effect was non-selective, which means it can remove amorphous cellulose and crystalline cellulose. Because of the nanoscale size and large number of free-end chains, the NCC degraded at a slightly lower temperature, which resulted in increased char residue (9.6-16.1%), compared with that of the MCC (6.2%). The storage modulus of the nanocomposite films were significantly improved compared with that of pure PVA films. The modulus of PVA with 8 wt.% NCC was 2.40× larger than that of pure PVA.
Herein, walnut shell (WS) was utilized as the raw material for the production of purified cellulose. The production technique involves multiple treatments, including alkaline treatment and bleaching. Furthermore, two nanocellulose materials were derived from WS by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation and sulfuric acid hydrolysis, demonstrating the broad applicability and value of walnuts. The micromorphologies, crystalline structures, chemical functional groups, and thermal stabilities of the nanocellulose obtained via TEMPO oxidation and sulfuric acid hydrolysis (TNC and SNC, respectively) were comprehensively characterized. The TNC exhibited an irregular block structure, whereas the SNC was rectangular in shape, with a length of 55–82 nm and a width of 49–81 nm. These observations are expected to provide insight into the potential of utilizing WSs as the raw material for preparing nanocellulose, which could address the problems of the low-valued utilization of walnuts and pollution because of unused WSs.
An environmentally friendly bleached extruder chemi-mechanical pulp fiber or wood flour was melt compounded with poly(lactic acid) (PLA) into a biocomposite and hot compression molded. The mechanical, thermal, and rheological properties were determined. The chemical composition, scanning electron microscopy, and Fourier transform infrared spectroscopy results showed that the hemicellulose in the pulp fiber raw material was almost completely removed after the pulp treatment. The mechanical tests indicated that the pulp fiber increased the tensile and flexural moduli and decreased the tensile, flexural, and impact strengths of the biocomposites. However, pulp fiber strongly reinforced the PLA matrix because the mechanical properties of pulp fiber-PLA composites (especially the tensile and flexural strengths) were better than those of wood flour-PLA composites. Differential scanning calorimetry analysis confirmed that both pulp fiber and wood flour accelerated the cold crystallization rate and increased the degree of crystallinity of PLA, and that this effect was greater with 40% pulp fiber. The addition of pulp fiber and wood flour modified the rheological behavior because the composite viscosity increased in the presence of fibers and decreased as the test frequency increased.
A hydrothermal method for synthesis of lignin-based N-doped carbon quantum dots (NCQDs) proposes a mechanism for rapid reaction of NCQDs with formaldehyde to generate Schiff bases, which leads to enhanced FL emission and the observed blue shift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.