We report on 16 patients with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL) that we treated with autologous T cells expressing the 19-28z chimeric antigen receptor (CAR) specific to the CD19 antigen. The overall complete response rate was 88%, which allowed us to transition most of these patients to a standard-of-care allogeneic hematopoietic stem cell transplant (allo-SCT). This therapy was as effective in high-risk patients with Philadelphia chromosome–positive (Ph+) disease as in those with relapsed disease after previous allo-SCT. Through systematic analysis of clinical data and serum cytokine levels over the first 21 days after T cell infusion, we have defined diagnostic criteria for a severe cytokine release syndrome (sCRS), with the goal of better identifying the subset of patients who will likely require therapeutic intervention with corticosteroids or interleukin-6 receptor blockade to curb the sCRS. Additionally, we found that serum C-reactive protein, a readily available laboratory study, can serve as a reliable indicator for the severity of the CRS. Together, our data provide strong support for conducting a multicenter phase 2 study to further evaluate 19-28z CAR T cells in B-ALL and a road map for patient management at centers now contemplating the use of CAR T cell therapy.
Adults with relapsed B-acute lymphoblastic leukemia (ALL) have a dismal prognosis. Only those patients able to achieve a second remission with no minimal residual disease (MRD−) have a hope for long-term survival in the context of a subsequent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have treated 5 relapsed B-ALL subjects with autologous T cells expressing a CD19-specific CD28/CD3ζ second generation dual-signaling chimeric antigen receptor (CAR) termed 19-28z. All patients with persistent morphological disease or MRD+ disease upon T cell infusion demonstrated rapid tumor eradication and achieved MRD-negative complete remissions as assessed by deep sequencing PCR. Therapy was well tolerated although significant cytokine elevations, specifically observed in those patients with morphologic evidence of disease at the time of treatment, required lymphotoxic steroid therapy to ameliorate cytokine-mediated toxicities. Significantly, cytokine elevations directly correlated to tumor burden at the time of CAR modified T cell infusions. Tumor cells from one patient with relapsed disease after CAR modified T cell therapy, ineligible for additional allo-HSCT therapy, exhibited persistent expression of CD19 and sensitivity to autologous 19-28z T cell mediated cytotoxicity suggesting potential clinical benefit of additional CAR modified T cell infusions. These results demonstrate the marked anti-tumor efficacy of 19-28z CAR modified T cells in patients with relapsed/refractory B-ALL and the reliability of this novel therapy to induce profound molecular remissions, an ideal bridge to potentially curative therapy with subsequent allo-HSCT.
Purpose: We evaluated the performance of the newly proposed radiomics of multiparametric MRI (RMM), developed and validated based on a multicenter dataset adopting a radiomic strategy, for pretreatment prediction of pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Experimental Design: A total of 586 potentially eligible patients were retrospectively enrolled from four hospitals (primary cohort and external validation cohort 1-3). Quantitative imaging features were extracted from T2-weighted imaging, diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging before NAC for each patient. With features selected using a coarse to fine feature selection strategy, four radiomic signatures were constructed based on each of the three MRI sequences and their combination. RMM was developed based on the best radiomic signature incorporating with independent clinicopathologic risk factors. The performance of RMM was assessed with respect to its discrimination and clinical usefulness, and compared with that of clinical information-based prediction model. Results: Radiomic signature combining multiparametric MRI achieved an AUC of 0.79 (the highest among the four radiomic signatures). The signature further achieved good performances in hormone receptor-positive and HER2negative group and triple-negative group. RMM yielded an AUC of 0.86, which was significantly higher than that of clinical model in two of the three external validation cohorts. Conclusions: The study suggested a possibility that RMM provided a potential tool to develop a model for predicting pCR to NAC in breast cancer.
SUMMARY Differentiated cells possess a remarkable genomic plasticity that can be manipulated to reverse or change developmental commitments. Here, we show that the leprosy bacterium hijacks this property to reprogram adult Schwann cells, its preferred host niche, to a stage of progenitor/stem-like cells (pSLC) of mesenchymal traits by downregulating Schwann cell lineage/differentiation-associated genes and upregulating genes mostly of mesoderm development. Reprogramming accompanies epigenetic changes and rendered infected cells highly plastic, migratory and immunomodulatory. We provide evidence that acquisition of these properties by pSLC promotes bacterial spread by two distinct mechanisms: direct differentiation to mesenchymal tissues, including skeletal and smooth muscles, and by forming granuloma-like structures and subsequently release bacteria-laden macrophages. These findings support a model of host cell reprogramming in which a bacterial pathogen uses the plasticity of its cellular niche for promoting dissemination of infection, and provide an unexpected link between cellular reprogramming and host-pathogen interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.