Weather radar echo is the data detected by the weather radar sensor and reflects the intensity of meteorological targets. Using the technique of radar echo extrapolation, which is the prediction of future echoes based on historical echo observations, the approaching short-term weather conditions can be forecasted, and warnings can be raised with regard to disastrous weather. Recently, deep learning based extrapolation methods have been proposed and show significant application potential. However, there are two limitations of existing extrapolation methods which should be considered. First, few methods have investigated the impact of the evolutionary process of weather systems on extrapolation accuracy. Second, current deep learning methods usually encounter the problem of blurry echo prediction as extrapolation goes deeper. In this paper, we aim to address the two problems by proposing a Multi-Level Correlation Long Short-Term Memory (MLC-LSTM) and integrate the adversarial training into our approach. The MLC-LSTM can exploit the spatiotemporal correlation between multi-level radar echoes and model their evolution, while the adversarial training can help the model extrapolate realistic and sharp echoes. To train and test our model, we build a real-life multi-level weather radar echoes dataset based on raw CINRAD/SA radar observations provided by the National Meteorological Information Center, China. Extrapolation experiments show that our model can accurately forecast the motion and evolution of an echo while keeping the predicted echo looking realistic and fine-grained. For quantitative evaluation on probability of detection (POD), false alarm rate (FAR), critical success index (CSI), and Heidke skill score (HSS) metrics, our model can reach average scores of 0.6538 POD, 0.2818 FAR, 0.5348 CSI, and 0.6298 HSS, respectively when extrapolating 15 echoes into the future, which outperforms the current state-of-the-art extrapolation methods. Both the qualitative and quantitative experimental results demonstrate the effectiveness of our model, suggesting that it can be effectively applied to operational weather forecasting practice.
Radar echo extrapolation has been widely developed in previous studies for precipitation and storm nowcasting. However, most studies have focused on two-dimensional radar images, and extrapolation of multi-altitude radar images, which can provide more informative and visual forecasts about weather systems in realistic space, has been less explored. Thus, this paper proposes a 3D-convolutional long short-term memory (ConvLSTM)-based model to perform three-dimensional gridded radar echo extrapolation for severe storm nowcasting. First, a 3D-convolutional neural network (CNN) is used to extract the 3D spatial features of each input grid radar volume. Then, 3D-ConvLSTM layers are leveraged to model the spatial–temporal relationship between the extracted 3D features and recursively generate the 3D hidden states correlated to the future. Nowcasting results are obtained after applying another 3D-CNN to up-sample the generated 3D hidden states. Comparative experiments were conducted on a public National Center for Atmospheric Research Data Archive dataset with a 3D optical flow method and other deep-learning-based models. Quantitative evaluations demonstrate that the proposed 3D-ConvLSTM-based model achieves better overall and longer-term performance for storms with reflectivity values above 35 and 45 dBZ. In addition, case studies qualitatively demonstrate that the proposed model predicts more realistic storm evolution and can facilitate early warning regarding impending severe storms.
Abstract. Weather radar echo is one of the fundamental data for meteorological workers to weather systems identification and classification. Through the technique of weather radar echo extrapolation, the future short-term weather conditions can be predicted and severe convection storms can be warned. However, traditional extrapolation methods cannot offer accurate enough extrapolation results since their modeling capacity is limited, the recent deep learning based methods make some progress but still remains a problem of blurry prediction when making deeper extrapolation, which may due to they choose the mean square error as their loss function and that will lead to losing echo details. To address this problem and make a more realistic and accurate extrapolation, we propose a deep learning model called Adversarial Extrapolation Neural Network (AENN), which is a Generative Adversarial Network (GAN) structure and consist of a conditional generator and two discriminators, echo-frame discriminator and echo-sequence discriminator. The generator and discriminators are trained alternately in an adversarial way to make the final extrapolation results be realistic and accurate. To evaluate the model, we conduct experiments on extrapolating 0.5h, 1h, and 1.5h imminent future echoes, the results show that our proposed AENN can achieve the expected effect and outperforms other models significantly, which has a powerful potential application value for short-term weather forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.