Mycoplasmas bovis (M. bovis) is an important pathogen that causes a variety of diseases, such as bovine respiratory diseases and causes significant losses to the national cattle industry every year, seriously affecting the development of the cattle industry worldwide. The pathogenic mechanism of M. bovis infection is still unknown, which leads to the lack of timely diagnosis and treatment. In this study, embryonic bovine lung (EBL) cells, infected with M. bovis were collected for gene profiling and detection of marker genes in the mTOR signaling pathway. The result showed that M. bovis infection significantly inhibits EBL growth in a dose-dependent manner. The transcription profiling data uncovered that M. bovis infection repressed a series of gene expressions in EBL cells, which are mainly related to metabolic process and immune response. Notably, many marker genes in the PI3K-Akt-mTOR pathway showed down-regulation after M. bovis infection. Further evidence showed that M. bovis infection inhibits expression of mTOR signaling pathway marker genes in EBL cells, which are time dependent. To further understand the M. bovis-induced inhibitory effect of mTOR signaling pathway, this study employed FBS as a supplement for exogenous nutrients and found that addition of a high concentration of FBS can rescue M. bovis-induced cell damage. In addition, a high concentration of FBS can rescue down-regulated mTOR signaling, including increasing transcriptional expression and protein phosphorylation level of mTOR pathway marker genes. This study demonstrated that M. bovis infection leads to inhibition of the nutrient metabolic pathway mTOR in a time-dependent manner, which would be helpful to further understand M. bovis infection mechanism and develop a new efficient anti-mycoplasma strategy targeting mTOR signaling.
As a consequence of high failure rate occurring to wind turbines (WTs), more and more asset owners begin to pay attention to WT's maintenance planning. To implement an efficient condition-based maintenance policy, the deterioration modeling is of primary importance.The inherence character of wind makes WT's operation full of uncertainties, hence, the pitch actuator movement is random and it can be modeled by a stochastic process. Meanwhile, the deterioration of the pitch control system related to the usage of the actuator is random. When the wind speed is higher than the rated wind speed (a design WT parameter, when wind speed is higher than the rated wind speed, the pitch system begin to operate) and the wind speed turbulence intensity (TI) is very important, the deterioration rate of the pitch control system increases significantly. For instance the pitch system has more failures in a windy season. Therefore, in order to propose an appropriate maintenance policy for pitch control system, it is more sensible to take into account the influence of wind speed in deterioration modelling.In this paper, we focus on the deterioration of hydraulic pitch control system. After studying the factors influencing the deterioration, a stochastic process considering wind speed as covariates is used to model the deterioration. A maintenance policy based on an alarm threshold is considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.