Abstract. Neural networks have recently been proposed for multi-label classification because they are able to capture and model label dependencies in the output layer. In this work, we investigate limitations of BP-MLL, a neural network (NN) architecture that aims at minimizing pairwise ranking error. Instead, we propose to use a comparably simple NN approach with recently proposed learning techniques for large-scale multi-label text classification tasks. In particular, we show that BP-MLL's ranking loss minimization can be efficiently and effectively replaced with the commonly used cross entropy error function, and demonstrate that several advances in neural network training that have been developed in the realm of deep learning can be effectively employed in this setting. Our experimental results show that simple NN models equipped with advanced techniques such as rectified linear units, dropout, and AdaGrad perform as well as or even outperform state-of-the-art approaches on six large-scale textual datasets with diverse characteristics.
Conventional multi-label classification algorithms treat the target labels of the classification task as mere symbols that are void of an inherent semantics. However, in many cases textual descriptions of these labels are available or can be easily constructed from public document sources such as Wikipedia. In this paper, we investigate an approach for embedding documents and labels into a joint space while sharing word representations between documents and labels. For finding such embeddings, we rely on the text of documents as well as descriptions for the labels. The use of such label descriptions not only lets us expect an increased performance on conventional multi-label text classification tasks, but can also be used to make predictions for labels that have not been seen during the training phase. The potential of our method is demonstrated on the multi-label classification task of assigning keywords from the Medical Subject Headings (MeSH) to publications in biomedical research, both in a conventional and in a zero-shot learning setting.
In this paper, we introduce a novel approach to sentiment polarity classification of citations, which integrates data about the authors' reputation. More specifically, our method extends the h-index with citation polarities and utilizes it in sentiment classification of citation sentences. Our computational results show that our method yields significant improvement in terms of classification performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.