An intelligent emergency system for hazard monitoring and building evacuation is a very important application area in Internet of Things (IoT) technology. Through the use of smart sensors, such a system can provide more vital and reliable information to first-responders and also reduce the incidents of false alarms. Several smart monitoring and warning systems do already exist, though they exhibit key weaknesses such as a limited monitoring coverage and security, which have not yet been sufficiently addressed. In this paper, we propose a monitoring and emergency response method for buildings by utilizing beacons and Unmanned Aerial Vehicles (UAVs) on an IoT security platform. In order to demonstrate the practicability of our method, we also implement a proof of concept prototype, which we call the UAV-EMOR (UAV-assisted Emergency Monitoring and Response) system. Our UAV-EMOR system provides the following novel features: (1) secure communications between UAVs, smart sensors, the control server and a smartphone app for security managers; (2) enhanced coordination between smart sensors and indoor/outdoor UAVs to expand real-time monitoring coverage; and (3) beacon-aided rescue and building evacuation.
This paper proposes a home intrusion detection system that makes the best use of a retired smartphone and an existing Wi-Fi access point. On-board sensors in the smartphone mounted on an entrance door records signals upon unwanted door opening. The access point is reconfigured to serve as a home server and thus it can process sensor data to detect unauthorized access to home by an intruder. Recycling devices enables a home owner to build own security system with no cost as well as helps our society deal with millions of retired devices and waste of computing resources in already-deployed IT devices. In order to improve detection accuracy, this paper proposes a detection method that employs a machine learning algorithm and an analysis technique of time series data. To minimize energy consumption on a battery-powered smartphone, the proposed system utilizes as few sensors as possible and offloads all the computation to the home edge server. We develop a prototype and run experiments to evaluate accuracy performance of the proposed system. Results show that it can detect intrusion with probability of 95% to 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.