Phosphorus-doped ordered mesoporous carbons (POMCs) with different lengths were synthesized using a metal-free nanocasting method of SBA-15 mesoporous silica with different sizes as template and triphenylphosphine and phenol as phosphorus and carbon sources, respectively. The resultant POMC with a small amount of P doping is demonstrated as a metal-free electrode with excellent electrocatalytic activity for oxygen reduction reaction (ORR), coupled with much enhanced stability and alcohol tolerance compared to those of platinum via four-electron pathway in alkaline medium. Interestingly, the POMC with short channel length is found to have superior electrochemical performances compared to those with longer sizes.
We discuss the use of nuclear magnetic resonance (NMR) spectroscopy to investigate the physical state of the eutectic composition of LiBH 4 −Ca(BH 4 ) 2 (LC) infiltrated into mesoporous scaffolds and the interface effect of various scaffolds. Eutectic melting and the melt infiltration of mixed borohydrides were observed through in situ NMR. In situ and ex situ NMR results for LC mixed with mesoporous scaffolds indicate that LiBH 4 and Ca(BH 4 ) 2 exist as an amorphous mixture inside of the pores after infiltration. Surprisingly, the confinement of the eutectic LC mixture within the mesopores is initiated below the melting temperature, which indicates a certain interaction between the borohydrides and the mesoporous scaffolds. The confined borohydrides remain inside of the pores after cooling. These phenomena were not observed in microporous or nonporous materials, and this observation highlights the importance of the pore structure of the scaffolds. Such surface interactions may be associated with a faster dehydrogenation of the nanoconfined borohydrides. SECTION: Energy Conversion and Storage; Energy and Charge Transport
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.