Models of neural machine translation are often from a discriminative family of encoderdecoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoderdecoder model that can be trained end-to-end. Different from the vanilla encoder-decoder model that generates target translations from hidden representations of source sentences alone, the variational model introduces a continuous latent variable to explicitly model underlying semantics of source sentences and to guide the generation of target translations. In order to perform efficient posterior inference and large-scale training, we build a neural posterior approximator conditioned on both the source and the target sides, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on both Chinese-English and EnglishGerman translation tasks show that the proposed variational neural machine translation achieves significant improvements over the vanilla neural machine translation baselines.
It is intuitive that semantic representations can be useful for machine translation, mainly because they can help in enforcing meaning preservation and handling data sparsity (many sentences correspond to one meaning) of machine translation models. On the other hand, little work has been done on leveraging semantics for neural machine translation (NMT). In this work, we study the usefulness of AMR (short for abstract meaning representation) on NMT. Experiments on a standard English-to-German dataset show that incorporating AMR as additional knowledge can significantly improve a strong attention-based sequence-tosequence neural translation model.
Implicit discourse relation recognition remains a serious challenge due to the absence of discourse connectives. In this paper, we propose a Shallow Convolutional Neural Network (SCNN) for implicit discourse relation recognition, which contains only one hidden layer but is effective in relation recognition. The shallow structure alleviates the overfitting problem, while the convolution and nonlinear operations help preserve the recognition and generalization ability of our model. Experiments on the benchmark data set show that our model achieves comparable and even better performance when comparing against current state-of-the-art systems.
With parallelizable attention networks, the neural Transformer is very fast to train. However, due to the auto-regressive architecture and self-attention in the decoder, the decoding procedure becomes slow. To alleviate this issue, we propose an average attention network as an alternative to the self-attention network in the decoder of the neural Transformer. The average attention network consists of two layers, with an average layer that models dependencies on previous positions and a gating layer that is stacked over the average layer to enhance the expressiveness of the proposed attention network. We apply this network on the decoder part of the neural Transformer to replace the original target-side self-attention model. With masking tricks and dynamic programming, our model enables the neural Transformer to decode sentences over four times faster than its original version with almost no loss in training time and translation performance. We conduct a series of experiments on WMT17 translation tasks, where on 6 different language pairs, we obtain robust and consistent speed-ups in decoding. 1
IntroductionAspect-level sentiment classification (ASC), as an indispensable task in sentiment analysis, aims at inferring the sentiment polarity of an input sentence in a certain aspect. In this regard, pre- * Equal contribution † Corresponding author 1 https://github.com/DeepLearnXMU/PSSAttention
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.