Background: As members of the CT10 regulation of kinase (CRK) adaptor protein family, CRK-like (CRKL) and CRKII are involved in cell proliferation, survival, adhesion, migration and differentiation. However, the exact role and underlying mechanism of CRKL and CRKII in leukemic cell differentiation are still unknown. Methods: Quantitative real-time qPCR (qRT-PCR) was used to detect the expression levels of CRKL and CRKII in chronic myeloid leukemia (CML) patients and complete remission (CR) patients; Western blotting (WB) was used to measure the expression levels of CRKL and CRKII during hemin-induced erythroid differentiation of K562 cells; Benzidine staining, isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis, cDNA microarray assay, qRT-PCR and WB were used to examine the effects of CRKL and CRKII deregulation on erythroid and megakaryocyte differentiation of K562 cells; PD98059 was used to investigate the underlying mechanism of CRKL in erythropoiesis and megakaryopoiesis. Results: CRKL was found to be overexpressed in chronic myeloid leukemia (CML) patients compared with normal samples, while its expression level was lower in CR patients than in corresponding CML patients. The CRKL expression level was significantly decreased during the erythroid differentiation of K562 cells following hemin treatment. Moreover, CRKL downregulation promoted erythroid and megakaryocyte differentiation of K562 cells accompanied by increased expression level of the erythroid differentiation markers γ-globin, glycophorin (GPA) and the megakaryocyte differentiation markers CD41, CD61. Furthermore, gene microarray and iTRAQ quantitative proteomic analysis showed that CRKL downregulation increased hemoglobin (HB) molecules HBD, HBA1, HBA2, HBZ, HBE1, HBG1 and globin transcription factor 1 (GATA1), high-mobility group protein (HMGB2) expression levels. Mechanistically, CRKL inhibited erythroid and megakaryocyte differentiation of K562 cell via inactivating Raf/MEK/ERK/Elk-1 pathway. Conversely, CRKII was only slightly overexpressed in CML patients and had no effect on erythroid differentiation of K562 cells. Conclusions: Taken together, our results demonstrate that CRKL but not CRKII contributes to development, progression, erythropoiesis and megakaryopoiesis of CML, providing novel insights into effective diagnosis and therapy for CML patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.