The terminal groups of natural rubber (NR) are widely believed to play a crucial role in defining the excellent mechanical and other physical properties of processed NR products. Despite their presumed importance, the chemical structures of the terminal groups are elusive in widely used NR species with a high degree of polymerization, such as Hevea natural rubber (H-NR). In previous studies, structural analysis by solution NMR has been carried out on the terminal units of NR after chemical treatment involving chemical alterations, such as deproteinization with enzymes and other chemicals. However, there is concern that such chemical treatments may alter the properties of the terminal units. In this study, we established an NMR-based approach to analyze the structures of the terminal units in commercial H-NR without any chemical treatments, or with only a mild treatment of some samples, such as acetone extraction for removing the impurities. To suppress the signals of low-molecular-weight impurities, we have developed methods combining DOSY-based diffusion filters with multiple-WET (MWET) 2D-NMR, which we introduced previously to suppress strong signals from main-chain of polymer and solvents (Tanaka et al. Macromolecules, 2016, 49, 5750− 5754). Using the new method and MWET 2D-NMR methods with high-field NMR at a 1 H frequency of 900 MHz, we observed NMR signals of the terminal units of chemically untreated commercial H-NR for the first time. The NMR results for eight commercial H-NR samples consistently demonstrated the presence of at least five kinds of terminating-end (α-terminus) units of the H-NR polymer chain in addition to NMR signals for the initiating-end (ω-terminus) units. Our NMR analyses revealed for the first time that none of the α-terminal groups form a phosphate ester.
Crosslinking junctions of natural rubber vulcanizates were characterized by high-resolution latex-state 13C-NMR spectroscopy. Vulcanized natural rubber latex was prepared by two methods: i.e., vulcanization of the rubber latex and cryogenic crushing of a rubber sheet vulcanized on a hot press. High-resolution latex-state 13C-NMR spectroscopy was attained even after vulcanization of the rubber latex, as is evident from no background in spectrum and narrow half width of signals independent of vulcanization time. Small signals at 44 ppm and 57 ppm in the aliphatic carbon region were assigned by measurements of both Distortionless Enhancement by Polarization Transfer (DEPT) and Attached Proton Test (APT) to secondary and tertiary carbons of crosslinking points. The assignment was proved by high-resolution solution-state NMR spectroscopy of vulcanized liquid cis-1,4-polyisoprene as a model, in which DEPT, APT, 2-dimensional 1H-1H correlation (H-H COSY), 2-dimensional 1H-13C correlation (H-C COSY) and 2-dimensional heteronuclear multiple bond correlation (HMBC) measurements were applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.