We performed pulsed-gradient spin-echo nuclear-magnetic-resonance (NMR) experiments on zinc oxide filled polyethylene. The molecular weights of the polyethylene samples ranged between 808 and 33,000 gmol, and four different zinc oxide samples were used: 27-, 33-, 51-, and 2500-nm-diameter particles. The results of these experiments showed that the diffusion coefficients of the polyethylene chains did not change with nanofiller content, but a drastic change is observed in the NMR relaxation spectrum in spin-spin-relaxation experiments. At fixed zinc oxide content and polyethylene molecular weight (close to entanglement), the system with the smallest zinc oxide showed the most rigid environment. At high polyethylene molecular weights, this effect was still observable but the difference between the three investigated systems was very small, suggesting that the system was dominated by entanglements.
The spin relaxation time of alkali atoms in nuclear magnetic resonance gyroscope is usually on the order of 10<sup>–5</sup> s, which is much less than that in atomic magnetometers. The response of electron paramagnetic resonance signals of atoms with short relaxation time is asymmetric in different directions under oscillating magnetic fields, which makes the measurement results of atomic transverse relaxation time and Larmor frequency different. In this work this phenomenon is analyzed based on Bloch equation theory and the theoretical correction is given. The shorter the relaxation time, the greater the differences of the response intensity and resonance frequency of the electron paramagnetic resonance signal under different magnetic field directions will be. Using this property, the transmission delay time of the system can be measured accurately. In this paper proposed is a method of measuring transverse relaxation time based on the difference between signal phases in X-axis direction and Y-axis direction, which can accurately and quickly measure very short transverse relaxation time. The difference between the half-width fitting method and the phase measurement method is compared by measuring the transverse relaxation times of <sup>87</sup>Rb atoms under different magnetic field intensities. The half-width fitting method is greatly affected by the transmission delay time and has its measurement limit. The phase measurement method is greatly affected by the angle of the probe light, but the measurement range is wider and the anti-magnetic interference ability is stronger.
In the atomic cell of a nuclear magnetic resonance gyroscope, a transverse bias field is applied to enable the in situ alkali magnetometer to sense the variations in the longitudinal magnetic field. During a single relaxation process of the noble gas, the longitudinal relaxation time is obtained by monitoring and fitting the signal of the magnetometer in real-time. The relaxation times measured using our method are nearly identical to those obtained using the conventional delayed pulse method, but in contrast, our method saves ∼90% of the time. By using the new method, fast and accurate batch testing for a large number of atomic cells can be achieved to optimize the manufacturing of the cells, which is helpful in speeding up the development of gyroscopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.