Activity-based protein profiling (ABPP) has emerged as a powerful functional chemoproteomic strategy which enables global profiling of proteome reactivity toward bioactive small molecules in complex biological and/or pathological processes. To quantify the degree of reactivity in a site-specific manner, an isotopic tandem orthogonal proteolysis (isoTOP)-ABPP strategy has been developed; however, the high cost and long workflow associated with the synthesis of isotopically labeled cleavable tags limit its wide use. Herein, we combined reductive dimethyl labeling with TOP-ABPP to develop a fast, affordable, and efficient method, termed "rdTOP-ABPP", for quantitative chemical proteomics with site-specific precision and triplex quantification. The rdTOP-ABPP method shows high accuracy and precision, good reproducibility, and better capacity for site identification and quantification and is highly compatible with many commercially available cleavable tags. We demonstrated the power of rdTOP-ABPP by profiling the target of (1 S,3 R)-RSL3, a canonical inducer for cell ferroptosis, and provided the first global portrait of its proteome reactivity in a quantitative and site-specific manner.
Selenium (Se), as an essential trace element, plays crucial roles in many organisms including humans. The biological functions of selenium are mainly mediated by selenoproteins, a unique class of selenium-containing proteins in which selenium is inserted in the form of selenocysteine. Due to their low abundance and uneven tissue distribution, detection of selenoproteins within proteomes is very challenging, and therefore functional studies of these proteins are limited. In this study, we developed a computational method, named as selenium-encoded isotopic signature targeted profiling (SESTAR), which utilizes the distinct natural isotopic distribution of selenium to assist detection of trace selenium-containing signals from shotgun-proteomic data. SESTAR can detect femtomole quantities of synthetic selenopeptides in a benchmark test and dramatically improved detection of native selenoproteins from tissue proteomes in a targeted profiling mode. By applying SESTAR to screen publicly available datasets from Human Proteome Map, we provide a comprehensive picture of selenoprotein distributions in human primary hematopoietic cells and tissues. We further demonstrated that SESTAR can aid chemical-proteomic strategies to identify additional selenoprotein targets of RSL3, a canonical inducer of cell ferroptosis. We believe SESTAR not only serves as a powerful tool for global profiling of native selenoproteomes, but can also work seamlessly with chemical-proteomic profiling strategies to enhance identification of target proteins, post-translational modifications, or protein–protein interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.