Flooding has become the natural disaster that causes the greatest losses, with urban flooding restricting the healthy development of cities. The ability to assess a city’s resilience to flooding is very important and would contribute to improving resilience and also help to inform planning and development. The aim of this study was to determine the key urban flood resilience indicators for three different Chinese cities (Wuhan, Nanjing, and Hefei) and to prioritize these for each city. A combined interpretive structure and network analysis method (ISM-ANP) model was used to evaluate and analyze the selected evaluation indicators. A four-level urban flood resilience evaluation network model was constructed to determine the interdependence between indicators and to calculate the priorities of the flood resilience indicators for the three cities. Overall, rescue capacity was found to be extremely important and was defined as the most important index. For Wuhan, indicators related to the distribution of waters were found to be more important, while for Nanjing, spatial planning and spatial structure of land use were found to be key priorities. In Hefei, the level of investment in infrastructure and the level of public resources occupy a more important position. The framework presented in this study contributes to the understanding of urban flood resilience and has the potential to be extended to other natural hazards.
PurposeThe purpose of this study is to undertake an evaluation of the resilient capacity of the infrastructure systems in the city of Wuhan. This evaluation focuses on the ability of the infrastructure to cope with extreme weather from multiple dimensions and to propose effective interventions against such risks.Design/methodology/approachThis research draws on a review and synthesis of the theory of resilience and adopts the literature induction method to build an evaluation index for five urban systems, namely: roads; water supply and drainage; energy and power; urban disaster reduction; and communications. Index data from the period of 1990–2019 are combined with the views of experts from Wuhan and analyzed using principal component analysis (PCA) to calculate the weightings of the five urban systems. A fuzzy comprehensive evaluation method is then used to investigate the resilient capacity of these five urban infrastructure systems in the city.FindingsGenerally, the results show that the resilience of the infrastructure systems in Wuhan are at a high level. Based on the results, the communications and roads systems are found to have higher levels of resilience, while the disaster mitigation system is found to have a relatively low level of resilience. Recommendations are suggested to help improve resilience and prioritize investments in the development of the city's infrastructure systems.Research limitations/implicationsThe development of these specific indicators and quantitative requirements have not been studied in detail, so a more comprehensive, systematic evaluation of quantitative indicators and methods of urban infrastructure resilience is still required. In addition, the research on the resilience of urban infrastructure under extreme weather is still in its infancy, and it is essential to further increase the quantitative assessment of the resilience of urban infrastructure under construction. This will also be indispensable information in the subsequent implementation of a resilient planning process.Originality/valueThis research builds a rigorous and reliable evaluation model that avoids any subjective bias in the results and represents a new approach to evaluate the resilience of the infrastructure systems in the city of Wuhan, which could be applied to other cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.