Individuals affected with different neuropsychiatric disorders such as autism (AUT), schizophrenia (SCZ) and bipolar disorder (BPD), may share similar clinical manifestations, suggesting shared genetic influences and common biological mechanisms underlying these disorders. Using brain transcriptome data gathered from postmortem donors affected with AUT, SCZ and BPD, it is now possible to identify shared dysregulated gene sets, i.e., those abnormally expressed in brains of neuropsychiatric patients, compared to non-psychiatric controls. Here, we apply a novel aberrant gene expression analysis method, coupled with consensus co-expression network analysis, to identify gene sets with shared dysregulated expression in cortical brains of individuals affected with AUT, SCZ and BPD. We identify eight gene sets with dysregulated expression shared by AUT, SCZ and BPD, 23 by AUT and SCZ, four by AUT and BPD, and two by SCZ and BPD. The identified genes are enriched with functions relevant to amino acid transport, synapse, neurotransmitter release, oxidative stress, nitric oxide synthase biosynthesis, immune response, protein folding, lysophosphatidic acid-mediated signaling and glycolysis. Our method has been proven to be effective in discovering and revealing multigene sets with dysregulated expression shared by different neuropsychiatric disorders. Our findings provide new insights into the common molecular mechanisms underlying the pathogenesis and progression of AUT, SCZ and BPD, contributing to the study of etiological overlap between these neuropsychiatric disorders.
Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases.
Polyadenylation [poly(A)] is a vital step in post-transcriptional processing of pre-mRNA. Alternative polyadenylation is a widespread mechanism of regulating gene expression in eukaryotes. Defining poly(A) sites contributes to the annotation of transcripts' ends and the study of gene regulatory mechanisms. Here, we survey methods for collecting poly(A) sites using high-throughput sequencing technologies and summarize the general processes for genome-wide poly(A) site identifications. We also compare the performances of various poly(A) site prediction models and discuss the relationship between poly(A) site identification from sequencing projects and predictive modeling. Moreover, we attempt to address some potential problems in current researches and propose future directions related to polyadenylation research.
Autism spectrum disorder (ASD) is characterized by substantial phenotypic and genetic heterogeneity, which greatly complicates the identification of genetic factors that contribute to the disease. Study designs have mainly focused on group differences between cases and controls. The problem is that, by their nature, group difference-based methods (e.g., differential expression analysis) blur or collapse the heterogeneity within groups. By ignoring genes with variable within-group expression, an important axis of genetic heterogeneity contributing to expression variability among affected individuals has been overlooked. To this end, we develop a new gene expression analysis method-aberrant gene expression analysis, based on the multivariate distance commonly used for outlier detection. Our method detects the discrepancies in gene expression dispersion between groups and identifies genes with significantly different expression variability. Using this new method, we re-visited RNA sequencing data generated from post-mortem brain tissues of 47 ASD and 57 control samples. We identified 54 functional gene sets whose expression dispersion in ASD samples is more pronounced than that in controls, as well as 76 co-expression modules present in controls but absent in ASD samples due to ASD-specific aberrant gene expression. We also exploited aberrantly expressed genes as biomarkers for ASD diagnosis. With a whole blood expression data set, we identified three aberrantly expressed gene sets whose expression levels serve as discriminating variables achieving >70 % classification accuracy. In summary, our method represents a novel discovery and diagnostic strategy for ASD. Our findings may help open an expression variability-centered research avenue for other genetically heterogeneous disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.