Abstract. The mammalian target of rapamycin (mTOR) is well-known as a promising therapeutic target in various cancer cells. mTOR activation decreases the sensitivity of ovarian cancer to cisplatin. Cardamonin inhibits the proliferation of various cancer cells by mTOR suppression. The present study examined whether cardamonin combined with cisplatin is efficacious for the anti-proliferation of ovarian cancer cells. The anti-proliferative effect was determined by MTT and cell cycle assays. Activation of the mTOR signal pathway and the expression of anti-apoptotic proteins were evaluated by western blot analysis. Cardamonin significantly enhanced the effects of cisplatin on cell proliferation and cell cycle progression. The expression of B cell lymphoma-2, X-linked inhibitor of apoptosis protein and Survivin was significantly decreased following combination treatment. Furthermore, the activation of mTOR and its downstream 70 kDa ribosomal protein S6 kinase was inhibited by cardamonin. These results demonstrated that the combinatorial effects of cardamonin and cisplatin on anti-proliferation were enhanced by suppressing the expression of anti-apoptotic proteins and activation of mTOR in ovarian cancer cells.
BackgroundAutophagy occurs in cells that undergoing nutrient deprivation. Glycolysis rapidly supplies energy for the proliferation of cancer cells. Cardamonin inhibits proliferation and enhances autophagy by mTORC1 suppression in ovarian cancer cells. Here, we investigate the relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression.MethodsTreated with indicated compounds, ATP content and the activity of hexokinase (HK) and lactate dehydrogenase (LDH) were analyzed by the assay kits. Autophagy was detected by monodansylcadaverin (MDC) staining. The relationship between cardamonin-triggered autophagy and glycolysis inhibition via mTORC1 suppression was analyzed by Western blot.ResultsWe found that cardamonin inhibited the lactate secretion, ATP production, and the activity of HK and LDH. The results demonstrated that cardamonin enhanced autophagy in SKOV3 cells, as indicated by acidic compartments accumulation, microtubule-associated protein 1 Light Chain 3-II (LC3-II) and lysosome associated membrane protein 1 up-regulation. Our results showed that the activation of mTORC1 signaling and the expression HK2 were reduced by cardamonin; whereas the phosphorylation of AMPK (AMP-activated protein kinase) was increased. We also confirmed that the AMPK inhibitor, Compound C, reversed cardamonin-induced upregulation of LC3-II.ConclusionThese results suggest that cardamonin-induced autophagy is associated with inhibition on glycolysis by down-regulating the activity of mTORC1 in ovarian cancer cells.
These findings demonstrated that the autophagy induced by cardamonin was associated with mTORC1 inhibition through decreasing the protein level of Raptor in SKOV3 cells.
PurposeCardamonin inhibits the proliferation of SKOV3 cells by suppressing the mammalian target of rapamycin complex 1 (mTORC1). However, the mechanism of cardamonin on mTORC1 inhibition has not been well demonstrated. The regulatory-associated protein of TOR (Raptor) is an essential component of mTORC1. Here, we investigated the role of Raptor in the mTORC1 inhibition effect of cardamonin in SKOV3 cells.MethodsThe expression of Raptor was knockdown by small interfering RNA (siRNA). The expressions of specific binding proteins of mTORC1 were analyzed by Western blotting, and the cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay.ResultsRapamycin, AZD8055, and cardamonin inhibited the activity of mammalian target of rapamycin (mTOR). Different from rapamycin and AZD8055, cardamonin suppressed the phosphorylation and protein expression of Raptor. Transfected with Raptor siRNA, the mTOR activation and proliferation of SKOV3 cells were decreased, and these effects were strengthened by cardamonin in Raptor siRNA SKOV3 cells. Cardamonin interfered with the lysosomal colocalization of mTOR with lysosomal associated membrane protein 2 (LAMP2), which was also hindered by Raptor siRNA. Furthermore, cardamonin strengthened the inhibitory effect on the lysosomal localization of mTOR in Raptor siRNA cells.ConclusionOur results suggested that Raptor mainly mediated the inhibition of cardamonin on mTORC1 in SKOV3 cells.
Background: Clear cell renal cell carcinoma (ccRCC) is one of the most common type of kidney malignancy. The proline-rich Akt substrate of 40 kDa (PRAS40) plays an important role in tumor growth.The present study aimed to analysis the prognostic value of PRAS40 mRNA expression in ccRCC. Methods:We analyzed the PRAS40 mRNA expression using the data from TCGA-KIRC cohort. A receiver operating characteristic (ROC) curve was performed to assessed the diagnostic value of PRAS40 mRNA expression in ccRCC. Chi-square test was used to analyzed the correlation between clinical characteristics and PRAS40 mRNA expression. Kaplan-Meier analysis and Cox analysis were performed to determine the prognostic value of PRAS40 mRNA expression in ccRCC. Gene set enrichment analysis (GSEA) was conducted using TCGA database.Results: Our results revealed that PRAS40 mRNA expression was higher in ccRCC tissues than in normal tissues. PRAS40 presented a moderate diagnostic value in ccRCC. High PRAS40 mRNA expression was correlated with histological grade, clinical stage, T classification, distant metastasis and vital status of ccRCC.High PRAS40 mRNA expression was associated with poor overall survival. Furthermore, Multivariate analysis revealed that PRAS40 was an independent risk factor for ccRCC patients. Myc targets, DNA repair, oxidative phosphorylation, glycolysis, adipogenesis, p53 pathway, reactive oxygen species pathway, myogenesis were differentially enriched in the phenotype that positively correlated with PRAS40. Conclusions:In conclusion, our results suggest that PRAS40 was a promising diagnostic and prognostic biomarker for ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.