Basic fibroblast growth factor (FGF‐2) is a multifunctional cytokine that regulates various cellular processes both in vitro and in vivo. FGF‐2 is extensively used in embryonic stem cell cultures since it can maintain the cells in an undifferentiated state. However, the high price of FGF‐2 has limited its application in stem cell research. Here we present a fast and efficient process for the purification of FGF‐2 from recombinant Escherichia coli cultures using reusable membrane adsorbers. A high expression level of FGF‐2 (42 mg/g dry cell) was achieved by fed‐batch cultivation of E. coli BL21(DE3). A new combination of cation exchange membrane chromatography and heparin‐sepharose affinity chromatography was used for the purification of the protein. A novel anion exchange membrane chromatography was used in the polishing step to remove endotoxins and DNA. In this new process, about 200 mg soluble FGF‐2 was yielded from 1.9 L culture broth with a purity of 98%. The purified protein was identified to be endotoxin‐free and bioactive. It was successfully tested to keep primate embryonic stem cell and human‐induced pluripotent stem cell pluripotent. Our approach, in which a controlled cultivation process is combined with an optimized fast and versatile downstreaming process, is suitable for low‐cost preparation of bioactive FGF‐2 at bench‐scale and may be beneficial to the effective production of other cytokines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.