Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15-20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. Figure 6. SEM images of the tensile fractured surface of (a) PMMA/20 wt % graphene composite, (b) PVC/20 wt % graphene composite, (c) ultimate tensile strength of polymer/graphene composites, (d) Young's modulus of polymer/graphene composites. [Color figure can be viewed at wileyonlinelibrary.com] ARTICLE WILEYONLINELIBRARY.COM/APP
The fabrication and characterization of nanostructured fibrous gold mats having high specific surface areas is reported. Freestanding porous films of 6-20-μm thickness and density 0.43 ± 0.02 g cm(3) are prepared using e-beam evaporation of gold on an electrospun nanoporous polymer template and subsequent removal of the template polymer in a suitable solvent. Structural characterization using electron microscopy techniques shows a nanofiber diameter in the range of 300-6000 nm, and the size of the nanochannels on the fiber surface is ≈200-350 nm. Such surface structuring is achieved through fast evaporation of organic solvent and phase separation of polymers during the electrospinning process. The wedge thickness varies from a few nanometers to a few tens of nanometers. The freestanding films possess good mechanical integrity and robustness. The calculated Young's modulus based on the slope in the elastic region is ≈114 MPa and gives an ultimate breaking strength of 0.7-0.8 MPa at a percentage elongation of 1.5-2.0%. X-ray diffraction and transmission electron microscopy measurements demonstrate the formation of polycrystalline gold nanostructures. Electrical characterization performed on these gold nanotubes reveals pure metallic behavior. Raman spectroscopic characterization of the fibrous membrane is performed using crystal violet (CV) adsorbed on it. Well-defined spectral peaks are obtainable at concentrations as low as 10(-7) M of CV, which did not give spectral signals at this low concentration on its own.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.