For Interferometry Synthetic Aperture Radar (InSAR), the normal baseline is one of the main factors that affects the accuracy of the ground elevation. For Gaofen-3 (GF-3) InSAR processing, the poor accuracy of the real-time orbit determination results in a large baseline error, leads to a modulation error in azimuth and a slope error in the range for timely Digital Elevation Model (DEM) generation. In order to address this problem, a novel baseline estimation approach based on Shuttle Radar Topography Mission (SRTM) DEM is proposed in this paper. Firstly, the orbit fitting is executed to remove the non-linear error factor, which is different from traditional methods. Secondly, the height errors are obtained in a slant-range plane between SRTM DEM and the GF-3 generated DEM, which can be used to estimate the baseline error with a linear variation. Then, the real-time orbit can be calibrated by the baseline error. Finally, the DEM generation is performed by using the modified baseline and orbit. This approach has the merit of spatial and precise orbital free ability. Based on the results of GF-3 interferometric SAR data for Hebei, the effectiveness of the proposed algorithm is verified and the accuracy of GF-3 real-time DEM products can be improved extensively.
Polarimetric SAR (PolSAR) scattering characteristics of imagery are always obtained from the second order moments estimation of multi-polarization data, that is, the estimation of covariance or coherency matrices. Due to the extra-paths that signal reflected from separate scatterers within the resolution cell has to travel, speckle noise always exists in SAR images and has a severe impact on the scattering performance, especially on single look complex images. In order to achieve high accuracy in estimating covariance or coherency matrices, three aspects are taken into consideration: (1) the edges and texture of the scene are distinct after speckle filtering; (2) the statistical characteristic should be similar to the object pixel; and (3) the polarimetric scattering signature should be preserved, in addition to speckle reduction. In this paper, a joint restriction principle is proposed to meet the requirement. Three different restriction principles are introduced to the processing of speckle filtering. First, a new template, which is more suitable for the point or line targets, is designed to ensure the morphological consistency. Then, the extent sigma filter is used to restrict the pixels in the template aforementioned to have an identical statistic characteristic. At last, a polarimetric similarity factor is applied to the same pixels above, to guarantee the similar polarimetric features amongst the optional pixels. This processing procedure is named as speckle filtering with joint restriction principle and the approach is applied to GF-3 polarimetric SAR data acquired in San Francisco, CA, USA. Its effectiveness of keeping the image sharpness and preserving the scattering mechanism as well as speckle reduction is validated by the comparison with boxcar filters and refined Lee filter.
Because the penetration depth of electromagnetic waves in forests is large in the longer wavelength band, most traditional forest height estimation methods are carried out using polarimetric interferometry synthetic aperture radar (PolInSAR) data of the L or P band, and the estimation method is a three-stage method based on the random volume over ground (RVoG) model. For X−band electromagnetic waves, the penetration depth of radar waves in forests is limited, so the traditional forest height estimation method is no longer applicable. In view of the above problems, in this paper we propose a new forest height estimation strategy for airborne X−band PolInSAR data. Firstly, the sub-view interferometric SAR pairs obtained via frequency segmentation (FS) in the Doppler domain are used to extend the polarimetric interferometry coherence coefficient (PolInCC) range of the original SAR image under different polarization states, so as to obtain the accurate ground phase. For the determination of the effective volume coherence coefficient (VCC), part of the fitting line of the extended-range PolInCC distribution that is intercepted by the fixed extinction coherence coefficient curve (FECCC) of the fixed range is averaged to obtain the accurate effective VCC. Finally, the high-precision forest canopy height in the X−band is estimated using the effective VCC with the ground phase removed in the look-up table (LUT). The effectiveness of the proposed method was verified using airborne-measured data obtained in Shaanxi Province, China. The comparison was carried out using different strategies, in which we substituted one step of the process with the conventional method. The results indicated that our new strategy could reduce the root mean square error (RMSE) of the predicted canopy height vastly to 1.02 m, with a lower estimation height error of 12.86%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.