Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and or hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage gated calcium channel alpha-2-delta-1 subunit (Cavα2δ-1) proteins is effective in the management of SCI induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Cavα2δ-1 in dorsal spinal cord (DSC). To test this hypothesis, we examined if SCI-induced dysregulation of spinal Cavα2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Cavα2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hindpaw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI induced Cavα2δ-1 protein upregulation by intrathecal Cavα2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI induced Cavα2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain development and selectively targeting this pathway may provide effective pain relief for SCI patients.
Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.
Azimuthally polarized beams are gaining fundamental importance for near-field force microscopy systems to inspect photoinduced magnetism in special molecules or nanostructures, due to their strong axial magnetic field and vanishing electric field. The magnetic dominant region represents a unique trait of such a beam as a potentially ideal structured light to probe photoinduced magnetism at the nanoscale. Therefore, we present a near-field characterization of an optical, sharply focused azimuthally polarized beam using photoinduced force microscopy, a technique with simultaneous near-field excitation and detection, achieving nanoscale resolution well beyond the diffraction limit. Such a method exploits the photoinduced gradient force on a nanotip, mechanically detected as forced oscillations of the cantilever in an atomic force microscopy system upon external light illumination. The photoinduced force is strongly localized, which that depends only on the near-field signal free from background scattering photons, granting photoinduced force microscopy a superior performance over its precedent near-field scanning optical microscopy. We develop an analytical model to correct the tip-induced measurement anisotropy, suppress the background noise, and reveal the local electric field distribution of the azimuthally polarized beam. These measurements are used to retrieve its strong longitudinal axial magnetic field at the center of the polarization vortex where the electric field vanishes. This study can lead to a plethora of possibilities in optomechanical, chemical, or biomedical applications. We also propose and discuss how to use such beams with polarization azimuthal symmetry as a way to calibrate microscope nanotips.
Plasmonic nanostructures with spatial symmetry breaking have a variety of applications, from enhancing the enantioselective detection of chiral molecules to creating photonics devices such as circular polarizers. Compared to their molecular counterparts, engineered nanostructures exhibit orders of magnitude larger circular dichroism (CD) at optical frequencies. Although 3D nanostructures such as nanohelices have been reported with high CD at mid-IR frequencies, such high CDs have not yet been achieved at visible frequencies with decent efficiencies. Here, we propose a planar array of plasmonic ramp-shaped nanostructures with an azimuthally gradient depth that exhibits a giant CD and dissymmetry factor at visible frequencies. The structure is fabricated on a gold-coated glass slide using focused ion beam (FIB) with gradient intensity to induce the required gradient depth, hence, breaking symmetry. Optical experimental characterization in the reflection spectrum shows a CD up to 64% and a dissymmetry factor up to 1.13 at 678 nm, in a good agreement with numerical simulations. We envision our proposed structure together with the suggested fabrication method to inspire the design of novel optical devices such as nanoscale circular polarizers and a host of chiral molecules to improve enantioselectivity in the pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.