This study addresses the development of algorithms for multiple target detection and tracking in the framework of sensor fusion and its application to autonomous navigation and collision avoidance systems for the unmanned surface vehicle (USV) Aragon. To provide autonomous navigation capabilities, various perception sensors such as radar, lidar, and cameras have been mounted on the USV platform and automatic ship detection algorithms are applied to the sensor measurements. The relative position information between the USV and nearby objects is obtained to estimate the motion of the target objects in a sensor‐level tracking filter. The estimated motion information from the individual tracking filters is then combined in a central‐level fusion tracker to achieve persistent and reliable target tracking performance. For automatic ship collision avoidance, the combined track data are used as obstacle information, and appropriate collision avoidance maneuvers are designed and executed in accordance with the international regulations for preventing collisions at sea (COLREGs). In this paper, the development processes of the vehicle platform and the autonomous navigation algorithms are described, and the results of field experiments are presented and discussed.
This study proposes a path planning algorithm for marine vehicles based on machine learning. The algorithm considers the dynamic characteristics of the vehicle and disturbance effects in ocean environments. The movements of marine vehicles are influenced by various physical disturbances in ocean environments, such as wind, waves, and currents. In the present study, the effects of ocean currents are the primary consideration. A kinematic model is used to incorporate the nonholonomic motion characteristics of a marine vehicle, and the reinforcement learning algorithm is used for path optimization to generate a feasible path that can be tracked by the vehicle. The proposed approach determines a near-optimal path that connects the start and goal points with a reasonable computational cost when the map and current field data are provided. To verify the optimality and validity of the proposed algorithm, a set of simulations were performed in simulated and actual ocean current conditions, and their results are presented.
We propose an integral sliding mode controller (ISMC) to stabilse an autonomous underwater vehicle (AUV) which is subject to modelling errors and often suffers from unknown environmental disturbances. The ISMC is effective in compensating for the uncertainties in the hydrodynamic and hydrostatic parameters of the vehicle and rejecting the unpredictable disturbance effects due to ocean waves, tides and currents. The ISMC is comprised of an equivalent controller and a switching controller to suppress the parameter uncertainties and external disturbances, and its closed-loop system is exponentially stable. Numerical simulations were performed to validate the proposed control approach, and experimental tests using Cyclops AUV were carried out to demonstrate its practical feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.