This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Summary
Tissue regeneration is a multi-step process mediated by diverse cellular hierarchies and states that are also implicated in tissue dysfunction and pathogenesis. Here we leveraged single-cell RNA sequencing in combination with
in vivo
lineage tracing and organoid models to finely map the trajectories of alveolar-lineage cells during injury repair and lung regeneration. We identified a distinct AT2-lineage population, damage-associated transient progenitors (DATPs), that arises during alveolar regeneration. We found that interstitial macrophage-derived IL-1β primes a subset of AT2 cells expressing
Il1r1
for conversion into DATPs via a
HIF1α
-mediated glycolysis pathway, which is required for mature AT1 cell differentiation. Importantly, chronic inflammation mediated by IL-1β prevents AT1 differentiation, leading to aberrant accumulation of DATPs and impaired alveolar regeneration. Together, this stepwise mapping to cell fate transitions shows how an inflammatory niche controls alveolar regeneration by controlling stem cell fate and behavior.
SummaryThe diversity of mesenchymal cell types in the lung that influence epithelial homeostasis and regeneration is poorly defined. We used genetic lineage tracing, single-cell RNA sequencing, and organoid culture approaches to show that Lgr5 and Lgr6, well-known markers of stem cells in epithelial tissues, are markers of mesenchymal cells in the adult lung. Lgr6+ cells comprise a subpopulation of smooth muscle cells surrounding airway epithelia and promote airway differentiation of epithelial progenitors via Wnt-Fgf10 cooperation. Genetic ablation of Lgr6+ cells impairs airway injury repair in vivo. Distinct Lgr5+ cells are located in alveolar compartments and are sufficient to promote alveolar differentiation of epithelial progenitors through Wnt activation. Modulating Wnt activity altered differentiation outcomes specified by mesenchymal cells. This identification of region- and lineage-specific crosstalk between epithelium and their neighboring mesenchymal partners provides new understanding of how different cell types are maintained in the adult lung.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.