Sampling-based motion planners have experienced much success due to their ability to efficiently and evenly explore the state space. However, for many tasks, it may be more efficient to not uniformly explore the state space, especially when there is prior information about its structure. Previous methods have attempted to modify the sampling distribution using hand selected heuristics that can work well for specific environments but not universally. In this paper, a policysearch based method is presented as an adaptive way to learn implicit sampling distributions for different environments. It utilizes information from past searches in similar environments to generate better distributions in novel environments, thus reducing overall computational cost. Our method can be incorporated with a variety of sampling-based planners to improve performance. Our approach is validated on a number of tasks, including a 7DOF robot arm, showing marked improvement in number of collision checks as well as number of nodes expanded compared with baseline methods.
This paper addresses the localization and navigation problem using invisible two dimensional barcodes on the floor. Compared with other methods using natural/artificial landmark, the proposed localization method has great advantages in cost and appearance, since the location of the robot is perfectly known using the barcode information after the mapping is finished. We also propose a navigation algorithm which uses the topological structure. For the topological information, we define nodes and edges which are suitable for indoor navigation, especially for large area having multiple rooms, many walls and many static obstacles. The proposed algorithm also has an advantage that errors occurred in each node are mutually independent and can be compensated exactly after some navigation using barcode. Simulation and experimental results were performed to verify the algorithm in the barcode environment, and the result showed an excellent performance. After mapping, it is also possible to solve the kidnapped case and generate paths using topological information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.