Sows are highly sensitive to deoxynivalenol (DON) and susceptible to reproductive toxicity caused by oxidative stress, but the potential mechanisms and effective interventions remain unclear. Here, we investigated the role of two antioxidants (cysteamine and N-acetyl-cysteine) in regulating the reproductive performance, redox status, and placental barrier function of sows and their potential mechanisms under DON exposure. Maternal dietary supply of antioxidants from day 85 of gestation to parturition reduced the incidence of stillbirths and low-birth-weight piglets under DON exposure. Moreover, the alleviation of DON-induced reproductive toxicity by dietary antioxidants was associated with the alleviation of placental oxidative stress, the enhancement of the placental barrier, and the vascular function of sows. Furthermore, in vivo and in vitro vascularized placental barrier modeling further demonstrated that antioxidants could reverse both DON transport across the placenta and DON-induced increase of placental barrier permeability. The molecular mechanism of antioxidant resistance to DON toxicity may be related to the signal transducer and activator of the transcription-3-occludin/zonula occludens-1 signaling pathway. Collectively, these results demonstrate the potential of antioxidants to protect the mother from DON-induced reproductive toxicity by alleviating placental oxidative stress and enhancing the placental barrier.
BACKGROUND: Abnormal placental angiogenesis is an important cause of fetal intrauterine growth restriction (IUGR), but its underlying mechanisms and therapies remain unclear. Adenosine and its mediated signaling has been reported to be associated with the development of angiogenesis. However, whether the adenosine-related signaling plays a role in modulating angiogenesis in placenta and the IUGR pregnancy outcomes remains unclear. METHODS: The angiogenesis and adenosine signaling expressions in normal and IUGR placentas were detected in different species. And the role of adenosine in regulating IUGR pregnancy outcomes was evaluated using diet-induced IUGR mouse model. Molecular mechanisms underlying adenosine-induced angiogenesis were investigated by in vitro angiogenesis assays and in vivo Matrigel plug assays. RESULTS: Here, we demonstrated poor angiogenesis and low adenosine concentration and downregulated expression of its receptor A2a (ADORA2A [adenosine A2a receptor]) in IUGR placenta. Additionally, the beneficial effects of adenosine in improving IUGR pregnancy outcomes were revealed in a diet-induced IUGR mouse model. Moreover, adenosine was found to effectively improve adenosine signaling and angiogenesis in IUGR mice placenta. Mechanistically, by using angiogenesis assays in vitro and in vivo, adenosine was shown to activate ADORA2A to promote the phosphorylation of Stat3 (signal transducer and activator of transcription 3) and Akt (protein kinase B), resulting in increased Ang (angiogenin)-dependent angiogenesis. CONCLUSIONS: Collectively, this study uncovers an unexpected mechanism of promoting placental angiogenesis by adenosine-ADORA2A signaling and advances the translation of this signaling as a prognostic indicator and therapeutic target in IUGR treatment.
Atherosclerosis (AS) is the leading cause of cardiovascular disease, causing a major burden on patients as well as families and society. Exosomes generally refer to various lipid bilayer microvesicles originating from different cells that deliver various bioactive molecules to the recipient cells, exerting biological effects in cellular communication and thereby changing the internal environment of the body. The mechanisms of correlation between exosomes and the disease process of atherosclerosis have been recently clarified. Exosomes are rich in nucleic acid molecules and proteins. For example, the exosome miRNAs reportedly play important roles in the progression of atherosclerotic diseases. In this review, we focus on the composition of exosomes, the mechanism of their biogenesis and release, and the commonly used methods for exosome extraction. By summarizing the latest research progress on exosomes and atherosclerosis, we can explore the advances in the roles of exosomes in atherosclerosis to provide new ideas and targets for atherosclerosis prevention, diagnosis, and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.