PurposeTripartite-motif-containing protein 56 (TRIM56) has been found to exhibit a broad antiviral activity, depending upon E3 ligase activity. Here, we attempted to evaluate the function of TRIM56 in multiple myeloma (MM) and its underlying molecular basis.Materials and MethodsTRIM56 expression at the mRNA and protein level was measured by qRT PCR and western blot analysis. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry analysis was performed to investigate the effect of TRIM56 on MM cell proliferation and apoptosis. The concentrations of interferon (IFN)-β, interleukin (IL)-6, and tumor necrosis factor-α in MM cell culture supernatants were detected with respective commercial ELISA kits. Western blot was employed to determine the effect of TRIM56 on toll-like receptor 3 (TLR3)/toll-IL-1 receptor (TIR) domain-containing adaptor inducing IFN-β (TRIF) signaling pathway.ResultsTRIM56 expression was prominently decreased in MM cells. Poly (dA:dT)-induced TRIM56 overexpression in U266 cells suppressed proliferation, induced apoptosis, and enhanced inflammatory cytokine production, while TRIM56 knockdown improved growth, diminished apoptosis, and inhibited inflammatory cytokine secretion in RPMI8226 cells. Moreover, TRIM56 knockdown blocked TLR3 signaling pathway. Furthermore, poly (I:C), a TLR3 agonist, markedly abolished TRIM56 depletion-induced increase of proliferation, decrease of apoptosis, and reduction of inflammatory factor in MM cells.ConclusionTRIM56 may act as a tumor suppressor in MM through activation of TLR3/TRIF signaling pathway, contributing to a better understanding of the molecular mechanism of TRIM56 involvement in MM pathogenesis and providing a promising therapy strategy for patients with MM.
miR-9 has been reported to play a pivotal role in multiple human cancers by acting as an oncogene or tumor suppressor. In this study, we explored the possible role and molecular mechanism of miR-9 in multiple myeloma (MM). The miR-9 expression was examined by quantitative real-time polymerase chain reaction assay. Transfection with miR-9-mimics, miR-9-inhibitor, pcDNA-TRIM56, or si-TRIM56 into cells was used to change the expression levels of miR-9 and TRIM56. Western blot analysis was used to detect the expression of TRIM56, p65, p-p65, IκBα, and p-IκBα. The potential target of miR-9 was confirmed by luciferase reporter assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, colony formation assay, and flow cytometry were used to assess the abilities of cell proliferation and apoptosis. miR-9 was upregulated in MM patients and cell lines, and miR-9 overexpression promoted proliferation and repressed apoptosis in MM cell lines. TRIM56 was confirmed as a target of miR-9. Moreover, TRIM56 reversed miR-9-mediated pro-proliferation and anti-apoptosis effect on MM cell lines. Furthermore, nuclear factor-κB (NF-κB) pathway was involved in miR-9/TRIM56-mediated regulation on MM cell lines. miR-9 promoted the development and progression of MM by regulating TRIM56/NF-κB pathway, thereby providing a potential microRNA-based target for MM therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.