Palladium (Pd) has been acknowledged to be a rare inner transition metal, which plays a pivotal role in many fields. This article focuses on developing a safe and effective near-infrared fluorescent probe, MW-PD, which would make a great contribution to the detection of palladium residue in drugs, especially trace residues. The fluorescent probe was rationally designed by combining the dicyanoisophorone fluorophore with an allyloxycarbonyl group. Based on the Tsuji-Trost reaction, the probe exhibited high selectivity and sensitivity toward Pd (0) over other common metal ions with a low detection limit (8.0 nM). Moreover, MW-PD showed biocompatibility and was successfully applied to imaging Pd (0) in Hela cells.
Summary
Using the characteristics of hydrogen peroxide that are able to cleave phenyl‐boric acid selectively and efficiently, we here report a dicyanoisophorone‐boric acid (DCP‐BA)‐based near‐infrared (NIR) fluorescent probe for detection of hydrogen peroxide. This probe shows a rapid, highly selective, and sensitive detection process for hydrogen peroxide with a significant NIR fluorescent turn‐on response that has been successfully applied to detect exogenous hydrogen peroxide in HeLa cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.