Although surface PEGylation of siRNA vectors is effective for preventing protein adsorption and thereby helps these vectors to evade the reticuloendothelial system (RES) in vivo, it also suppresses the cellular uptake of these vectors by target cells. This dilemma could be overcome by employing stimuli-responsive shell-detachable nanovectors to achieve enhanced cellular internalization while maintaining prolonged blood circulation. Among the possible stimuli, dysregulated pH in tumor (pHe) is the most universal and practical. However, the design of pHe-sensitive system is problematic because of the subtle differences between the pHe and pH in other tissues. Here, a simple acid-sensitive bridged copolymer is developed and used for tumor-targeted systemic delivery of siRNA. After forming the micelleplex delivery system, the corresponding nanoparticles (Dm-NP) might undergo several modifications as follows: (i) a poly(ethylene glycol) (PEG) corona, which is stable in the circulatory system and protects nanovectors from RES clearance; (ii) a pHe responsive linkage breakage, which induces PEG detachment at tumor sites and thereby facilitates cell targeting; and (iii) a cell-penetration peptide, which is exposed upon the removal of PEG and further enhances cellular uptake. Thus, Dm-NP achieved both prolonged circulation and effective accumulation in tumor cells and resulted in the safe and enhanced inhibition of non-small cell lung cancer growth.
Intratumoral
glucose depletion-induced cancer starvation represents
an important strategy for anticancer therapy, but it is often limited
by systemic toxicity, nonspecificity, and adaptive development of
parallel energy supplies. Herein, we introduce a concept of cascaded
catalytic nanomedicine by combining targeted tumor starvation and
deoxygenation-activated chemotherapy for an efficient cancer treatment
with reduced systemic toxicity. Briefly, nanoclustered cascaded enzymes
were synthesized by covalently cross-linking glucose oxidase (GOx)
and catalase (CAT) via a pH-responsive polymer. The
release of the enzymes can be first triggered by the mildly acidic
tumor microenvironment and then be self-accelerated by the subsequent
generation of gluconic acid. Once released, GOx can rapidly deplete
glucose and molecular oxygen in tumor cells while the toxic side product, i.e., H2O2, can be readily decomposed
by CAT for site-specific and low-toxicity tumor starvation. Furthermore,
the enzymatic cascades also created a local hypoxia with the oxygen
consumption and reductase-activated prodrugs for an additional chemotherapy.
The current report represents a promising combinatorial approach using
cascaded catalytic nanomedicine to reach concurrent selectivity and
efficiency of cancer therapeutics.
There is an urgent and unmet need for humanized in vivo models of type 1 diabetes to study immunopathogenesis and immunotherapy, and in particular antigen-specific therapy. Transfer of patient blood lymphocytes to immunodeficient mice is associated with xenogeneic graft-versus-host reactivity that complicates assessment of autoimmunity. Improved models could identify which human T cells initiate and participate in beta-cell destruction and help define critical target islet autoantigens. We used humanized mice (hu-mice) containing robust human immune repertoires lacking xenogeneic graft-versus-host reactivity to address this question. Hu-mice constructed by transplantation of HLA-DQ8 human fetal thymus and CD34 cells into HLA-DQ8-transgenic immunodeficient mice developed hyperglycemia and diabetes after transfer of autologous HLA-DQ8/insulin-B:9-23 (InsB:9-23)-specific T-cell receptor (TCR)-expressing human CD4 T cells and immunization with InsB:9-23. Survival of the infused human T cells depended on the preexisting autologous human immune system, and pancreatic infiltration by human CD3 T cells and insulitis were observed in the diabetic hu-mice, provided their islets were stressed by streptozotocin. This study fits Koch's postulate for pathogenicity, demonstrating a pathogenic role of islet autoreactive CD4 T-cell responses in type 1 diabetes induction in humans, underscores the role of the target beta-cells in their immunological fate, and demonstrates the capacity to initiate disease with T cells, recognizing the InsB:9-23 epitope in the presence of islet inflammation. This preclinical model has the potential to be used in studies of the pathogenesis of type 1 diabetes and for testing of clinically relevant therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.