Self-driving cars are a hot research topic in science and technology, which has a great influence on social and economic development. Deep learning is one of the current key areas in the field of artificial intelligence research. It has been widely applied in image processing, natural language understanding, and so on. In recent years, more and more deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. This paper presents a review of recent research on theories and applications of deep learning for self-driving cars. This survey provides a detailed explanation of the developments of self-driving cars and summarizes the applications of deep learning methods in the field of self-driving cars. Then the main problems in self-driving cars and their solutions based on deep learning methods are analyzed, such as obstacle detection, scene recognition, lane detection, navigation and path planning. In addition, the details of some representative approaches for self-driving cars using deep learning methods are summarized. Finally, the future challenges in the applications of deep learning for self-driving cars are given out.
Mobile robot localization has attracted substantial consideration from the scientists during the last two decades. Mobile robot localization is the basics of successful navigation in a mobile network. Localization plays a key role to attain a high accuracy in mobile robot localization and robustness in vehicular localization. For this purpose, a mobile robot localization technique is evaluated to accomplish a high accuracy. This paper provides the performance evaluation of three localization techniques named Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF). In this work, three localization techniques are proposed. The performance of these three localization techniques is evaluated and analyzed while considering various aspects of localization. These aspects include localization coverage, time consumption, and velocity. The abovementioned localization techniques present a good accuracy and sound performance compared to other techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.