The role of lncRNA in cancer development has received more and more attention in research. A variety of lncRNAs are associated with the occurrence and development of glioma. However, the role of TRHDE-AS1 in glioma is still unknown. In this study, we explored the role of TRHDE-AS1 in glioma through bioinformatic methods. We first identified an association between TRHDE-AS1 and tumor prognosis in pan-cancer analysis. Subsequently, the expression levels of TRHDE-AS1 in various clinical types of glioma were compared, and significant differences were found in pathological classification, WHO classification, molecular classification, IDH mutation, and age stratification. We analyzed the genes co-expressed with TRHDE-AS1 in glioma. In the functional analysis of TRHDE-AS1, we found that TRHDE-AS1 may be involved in the regulation of synapse-related functions. In glioma cancer driver gene correlation analysis, it was also found that TRHDE-AS1 was significantly correlated with the expression levels of multiple driver genes such as TP53, BRAF, and IDH1. By comparing the mutant profiles of the high and low TRHDE-AS1 groups, we also found that there may be differences in TP53 and CIC gene mutations in low-grade gliomas. Subsequent correlation analysis between TRHDE-AS1 and glioma immune microenvironment showed that the expression level of TRHDE-AS1 was correlated with a variety of immune cells. Therefore, we believe that TRHDE-AS1 is involved in the occurrence and development of glioma and has the ability to predict the prognosis of glioma as a biomarker of glioma.
Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the female reproductive tract. The overall survival of advanced and recurrent UCEC patients is still unfavourable nowadays. It is urgent to find a predictive biomarker and block tumorgenesis at an early stage. Plant homeodomain finger protein 6 (PHF6) is a key player in epigenetic regulation, and its alterations lead to various diseases, including tumours. Here, we found that PHF6 expression was upregulated in UCEC tissues compared with normal tissues. The UCEC patients with high PHF6 expression had poor survival than UCEC patients with low PHF6 expression. PHF6 mutation occurred in 12% of UCEC patients, and PHF6 mutation predicted favourable clinical outcome in UCEC patients. Depletion of PHF6 effectively inhibited HEC‐1‐A and KLE cell proliferation in vitro and decreased HEC‐1‐A cell growth in vivo. Furthermore, high PHF6 level indicated a subtype of UCECs characterized by low immune infiltration, such as CD3+ T‐cell infiltration. While knockdown of PHF6 in endometrial carcinoma cells increased T‐cell migration by promoting IL32 production and secretion. Taken together, our findings suggested that PHF6 might play an oncogenic role in UCEC patients. Thus, PHF6 could be a potential biomarker in predicting the prognosis of UCEC patients. Depletion of PHF6 may be a novel therapeutic strategy for UCEC patients.
Background The role of lncRNA in cancer development has received more and more attention in researches. A variety of lncRNAs are associated with the occurrence and development of glioma. However, the role of TRHDE-AS1 in glioma is still unknown. Result In this study, we explored the role of TRHDE-AS1 in glioma through bioinformatics methods. We first identified an association between TRHDE-AS1 and tumor prognosis in a pan-cancer analysis. Subsequently, the expression levels of TRHDE-AS1 in various clinical types of glioma were compared, and significant differences were found in pathological classification, WHO classification, molecular classification, IDH mutation and age stratification. We analyzed the genes co-expressed with TRHDE-AS1 in glioma. In the functional analysis of TRHDE-AS1, we found that TRHDE-AS1 may be involved in the regulation of synapse-related functions. In glioma cancer driver gene correlation analysis, it was also found that TRHDE-AS1 was significantly correlated with the expression levels of multiple driver genes such as TP53, BRAF, and IDH1. By comparing the mutant profiles of the high and low TRHDE-AS1 groups, we also found that there may be differences in TP53 and CIC gene mutations in low-grade gliomas. Subsequent correlation analysis between TRHDE-AS1 and glioma immune microenvironment showed that the expression level of TRHDE-AS1 was correlated with a variety of immune cells. Conclusion Therefore, we believe that TRHDE-AS1 is involved in the occurrence and development of glioma and has the ability to predict the prognosis of glioma as a biomarker of glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.