Aims
Mesenchymal stromal cells (MSCs) gradually become attractive candidates for cardiac inflammation modulation, yet understanding of the mechanism remains elusive. Strikingly, recent studies indicated that exosomes secreted by MSCs might be a novel mechanism for the beneficial effect of MSCs transplantation after myocardial infarction. We therefore explored the role of MSC-derived exosomes (MSC-Exo) in the immunomodulation of macrophages after myocardial ischaemia/reperfusion (I/R) and its implications in cardiac injury repair.
Methods and results
Exosomes were isolated from the supernatant of MSCs using gradient centrifugation method. Administration of MSC-Exo to mice through intramyocardial injection after myocardial I/R reduced infarct size and alleviated inflammation level in heart and serum. Systemic depletion of macrophages with clodronate liposomes abolished the curative effects of MSC-Exo. MSC-Exo modified the polarization of M1 macrophages to M2 macrophages both
in vivo
and
in vitro
. miRNA sequencing of MSC-Exo and bioinformatics analysis implicated miR-182 as a potent candidate mediator of macrophage polarization and toll-like receptor 4 (TLR4) as a downstream target. Diminishing miR-182 in MSC-Exo partially attenuated its modulation of macrophage polarization. Likewise, knock down of TLR4 also conferred cardioprotective efficacy and reduced inflammation level in a mouse model of myocardial I/R.
Conclusion
Our data indicate that MSC-Exo attenuates myocardial I/R injury in mice via shuttling miR-182 that modifies the polarization status of macrophages. This study sheds new light on the application of MSC-Exo as a potential therapeutic tool for myocardial I/R injury.
Cocaine dependence involves in the brain's reward circuit as well as nucleus accumbens (NAc), a key region of the mesolimbic dopamine pathway. Many studies have documented altered expression of genes and identified transcription factor networks and epigenetic processes that are fundamental to cocaine addiction. However, all these investigations have focused on mRNA of encoding genes, which may not always reflect the involvement of long non-coding RNAs (lncRNAs), which has been implied in a broad range of biological processes and complex diseases including brain development and neuropathological process. To explore the potential involvement of lncRNAs in drug addiction, which is viewed as a form of aberrant neuroplasticity, we used a custom-designed microarray to examine the expression profiles of mRNAs and lncRNAs in brain NAc of cocaine-conditioned mice and identified 764 mRNAs, and 603 lncRNAs were differentially expressed. Candidate lncRNAs were identified for further genomic context characterization as sense-overlap, antisense-overlap, intergenic, bidirection, and ultra-conserved region encoding lncRNAs. We found that 410 candidate lncRNAs which have been reported to act in cis or trans to their targeted loci, providing 48 pair mRNA-lncRNAs. These results suggest that the modification of mRNAs expression by cocaine may be associated with the actions of lncRNAs. Taken together, our results show that cocaine can cause the genome-wide alterations of lncRNAs expressed in NAc, and some of these modified RNA transcripts may to play a role in cocaine-induced neural plasticity and addiction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.