China is actively promoting the construction of clean energy to reach its objective of achieving carbon neutrality. However, engineering constructions in mountainous regions are susceptible to landslide disasters. Therefore, the assessment of landslide disaster susceptibility is indispensable for disaster prevention and risk management in construction projects. In this context, the present study involved conducting a field survey at 42 landslide points in the selected planned site region. According to the geological and geographical conditions of the study region, the existing regulation, and the influencing factors of landslides, the assessment in the field survey was performed based on 11 impact factors, namely, the slope, slope aspect, curvature, relative relief, NDVI, road, river, fault, lithology, the density of the landslide points, and the land-use type. Next, based on their respective influences, these impact factors were further divided into subfactors according to AHP, and the weights of each factor and subfactor were calculated. The GIS tools were employed for linear combination calculation and interval division, and accordingly, a landslide susceptibility zone map was constructed. The ROC curve was adopted to test the partition evaluation results, and the AUC value was determined to be 0.845, which indicated the high accuracy of the partition evaluation results.