Although high-frequency low-intensity transcutaneous electric nerve stimulation (TENS) has been extensively used to relieve low back pain, experimental studies of its effectiveness have yielded contradictory findings mainly due to methodological problems in pain evaluation and placebo control. In the present study, separate visual analog scales (VAS) were used to measure the sensory-discriminative and motivational-affective components of low back pain. Forty-two subjects were randomly assigned to 1 of 3 groups: TENS, placebo-TENS, and no treatment (control). In order to measure the short-term effect of TENS, VAS pain ratings were taken before and after each treatment session. Also, to measure long-term effects, patients rated their pain at home every 2 h throughout a 3-day period before and 1 week, 3 months and 6 months after the treatment sessions. In comparing the pain evaluations made immediately before and after each treatment session, TENS and placebo-TENS significantly reduced both the intensity and unpleasantness of chronic low back pain. TENS was significantly more efficient than placebo-TENS in reducing pain intensity but not pain unpleasantness. TENS also produced a significant additive effect over repetitive treatment sessions for pain intensity and relative pain unpleasantness. This additive effect was not found for placebo-TENS. When evaluated at home, pain intensity was significantly reduced more by TENS than placebo-TENS 1 week after the end of treatment, but not 3 months and 6 months later. At home evaluation of pain unpleasantness in the TENS group was never different from the placebo-TENS group.(ABSTRACT TRUNCATED AT 250 WORDS)
Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5′ flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis-regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus.Highlight:Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed.
Letters to the Editor are considered for publication (subject to editing and abridgment) provided they do not contain material that has been submitted or published elsewhere. Please note the following:• Your letter must be typewritten and triple-spaced.• Its text, not including references, must not exceed 400 words (please include a word count).• It must have no more than five references and one figure or table.• It should not be signed by more than three authors.• Letters referring to a recent Journal article must be received within four weeks of its publication.• Please include your full address, telephone number, and fax number (if you have one).You may send us your letter by post, fax, or electronic mail. We cannot acknowledge receipt of your letter, but we will notify you when we have made a decision about publication. We are unable to provide prepublication proofs. Please enclose a stamped, self-addressed envelope if you want unpublished material returned to you.Financial associations or other possible conflicts of interest must be disclosed. Submission of a letter constitutes permission for the Massachusetts Medical Society, its licensees, and its assignees to use it in the Journal 's various editions (print, data base, and optical disk) and in anthologies, revisions, and any other form or medium.The New England Journal of Medicine Downloaded from nejm.org on May 10, 2018. For personal use only. No other uses without permission.
Lemon is a healthy fruit with high medicinal value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.