RNase E has a pivotal role in the degradation and processing of RNAs in Escherichia coli, and protein inhibitors RraA and RraB control its enzymatic activity. The halophilic patho-genic bacterium Vibrio vulnificus also expresses orthologs of RNase E and RraA-RNase EV, RraAV1, and RraAV2 (herein renamed as VvRNase E, VvRraA1, and VvRraA2). A previous study showed that VvRraA1 actively inhibits the ribonucleolytic activity of VvRNase E by interacting with the C-terminal region of VvRNase E. However, the molecular mechanism underlying the effect of VvRraA1 on the ribonucleolytic activity of VvRNase E has not yet been elucidated. In this study, we report that the oligomer formation of VvRraA proteins affects binding efficiency to VvRNase E as well as inhibitory activity on VvRNase E action. The hexameric structure of VvRraA1 was converted to lower oligomeric forms when the Cys 9 residue was substituted with an Asp residue (VvRraA1-C9D), showing decreased inhibi-tory activity of VvRraA1 on VvRNase E in vivo. These results indicated that the intermolecu-lar disulfide linkage contributed critically to the hexamerization of VvRraA1 for its proper function. On the contrary, the VvRraA2 that existed in a trimeric state did not bind to or inhibit VvRNase E. An in vitro cleavage assay further showed the reduced inhibitory effect of VvRraA-C9D on VvRNase E activity compared to wild-type VvRraA1. These findings provide insight into how VvRraA proteins can regulate VvRNase E action on its substrate RNA in V. vulnificus. In addition, based on structural and functional comparison of RraA homo-logs, we suggest that hexameric assembly of RraA homologs may well be required for their action on RNase E-like proteins.
RNase E has a pivotal role in the degradation and processing of RNAs in Escherichia coli, and protein inhibitors RraA and RraB control its enzymatic activity. The halophilic pathogenic bacterium Vibrio vulnificus also expresses orthologs of RNase E and RraA—RNase EV, RraAV1, and RraAV2 (herein renamed as VvRNase E, VvRraA1, and VvRraA2). A previous study showed that VvRraA1 actively inhibits the ribonucleolytic activity of VvRNase E by interacting with the C-terminal region of VvRNase E. However, the molecular mechanism underlying the effect of VvRraA1 on the ribonucleolytic activity of VvRNase E has not yet been elucidated. In this study, we report that the oligomer formation of VvRraA proteins affects binding efficiency to VvRNase E as well as inhibitory activity on VvRNase E action. The hexameric structure of VvRraA1 was converted to lower oligomeric forms when the Cys 9 residue was substituted with an Asp residue (VvRraA1-C9D), showing decreased inhibitory activity of VvRraA1 on VvRNase E in vivo. These results indicated that the intermolecular disulfide linkage contributed critically to the hexamerization of VvRraA1 for its proper function. On the contrary, the VvRraA2 that existed in a trimeric state did not bind to or inhibit VvRNase E. An in vitro cleavage assay further showed the reduced inhibitory effect of VvRraA-C9D on VvRNase E activity compared to wild-type VvRraA1. These findings provide insight into how VvRraA proteins can regulate VvRNase E action on its substrate RNA in V. vulnificus. In addition, based on structural and functional comparison of RraA homologs, we suggest that hexameric assembly of RraA homologs may well be required for their action on RNase E-like proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.