Citrus fruits are subjected to a diversity of postharvest diseases caused by various pathogens during picking, packing, storage and transportation. Green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, are two major postharvest citrus diseases and cause significant economic losses during the commercialization phase. Currently, the control of postharvest citrus diseases relies mainly on the use of synthetic fungicides, which usually result in the resistance against fungal attack, environment pollution and health hazards. In recent years, much attention has been given to the preservation of citrus by naturally isolated edible plant extracts, medicinal plant extracts, Citrus extracts and volatiles, et al. Scientists worldwide devote their time and energy to discover the high effect, low toxicity, safety and inexpensive plant-derived fungicides. The current review will highlight plant-derived fungicides and chemical constituents that aim to inhibit P. digitatum and P. italicum in vitro and in vivo. Coatings enriched with plant extracts could be good alternative methods for Citrus fruits preservation. Problems and prospects of the research and development of plant-derived natural fungicides will also be discussed in this article.
7-demethoxytylophorine (DEM) is a phenanthroindolizidine alkaloid, which is reported to be effective in inhibiting leucocytes and regulation of human immunity. However, few studies reported the inhibitory effect of DEM against plant-pathogenic fungi, particularly postharvest pathogen Penicillium italicum (P. italicum). Current studies have investigated the antifungal activity of DEM through membrane damage and energy deficit in P. italicum. The results showed that the DEM potentially inhibits the growth of P. italicum in a dose-dependent manner. In vitro (mycelial growth and spore germination) tests showed great minimal inhibitory concentration (MIC) (1.56 µg mL−1) and minimum fugicide concentration (MFC) (6.25 µg mL−1). Microscopic analyses showed that mycelial morphology of P. italicum was severely damaged following DEM treatment. Moreover, relative electrical conductivity and lysis ability assays showed that DEM treatment aids in destroying the integrity of plasma membranes that deplete reducing sugars and soluble proteins. The activity of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) demonstrated that DEM led to the disruption of TCA cycle in P. italicum mycelia. The results of this study led us to conclude that, DEM could be used as a natural antifungal agent for controlling postharvest blue mold disease of citrus fruits caused by P. italicum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.