Gut microbes play significant roles in colitis development. The current study was aimed to uncover the preventive effects of lycopene (LYC), a functional carotenoid component, on colitis and the accompanied behavior disorders. The current study demonstrated that LYC treatment (50 mg/kg body weight/day) for 40 days prevented the dextran sulfate sodium (DSS)-induced gut barrier damages and inflammatory responses in male mice. LYC improved DSS-induced depression and anxiety-like behavioral disorders by suppressing neuroinflammation and prevented synaptic ultrastructure damages by upregulating the expressions of neurotrophic factor and postsynaptic-density protein. Moreover, LYC reshaped the gut microbiome in colitis mice by decreasing the relative abundance of proteobacteria and increasing the relative abundance of Bifidobacterium and Lactobacillus. LYC also elevated the generation of short-chain fatty acids and inhibited the permeability of lipopolysaccharide in colitis mice. In conclusion, LYC ameliorate DSS-induced colitis and behavioral disorders via mediating microbes–gut–brain axis balance.
BackgroundMicroRNAs (miRNAs) regulate various biological processes in plants. Considerable data are available on miRNAs involved in the development of rice, maize and barley. In contrast, little is known about miRNAs and their functions in the development of wheat. In this study, five small RNA (sRNA) libraries from wheat seedlings, flag leaves, and developing seeds were developed and sequenced to identify miRNAs and understand their functions in wheat development.ResultsTwenty-four known miRNAs belonging to 15 miRNA families were identified from 18 MIRNA loci in wheat in the present study, including 15 miRNAs (9 MIRNA loci) first identified in wheat, 13 miRNA families (16 MIRNA loci) being highly conserved and 2 (2 MIRNA loci) moderately conserved. In addition, fifty-five novel miRNAs were also identified. The potential target genes for 15 known miRNAs and 37 novel miRNAs were predicted using strict criteria, and these target genes are involved in a wide range of biological functions. Four of the 15 known miRNA families and 22 of the 55 novel miRNAs were preferentially expressed in the developing seeds with logarithm (log2) of the fold change of 1.0 ~ 7.6, and half of them were seed-specific, suggesting that they participate in regulating wheat seed development and metabolism. From 5 days post-anthesis to 20 days post-anthesis, miR164 and miR160 increased in abundance in the developing seeds, whereas miR169 decreased, suggesting their coordinating functions in the different developmental stages of wheat seed. Moreover, 8 known miRNA families and 28 novel miRNAs exhibited tissue-biased expression in wheat flag leaves, with the logarithm of the fold changes of 0.1 ~ 5.2. The putative targets of these tissue-preferential miRNAs were involved in various metabolism and biological processes, suggesting complexity of the regulatory networks in different tissues. Our data also suggested that wheat flag leaves have more complicated regulatory networks of miRNAs than developing seeds.ConclusionsOur work identified and characterised wheat miRNAs, their targets and expression patterns. This study is the first to elucidate the regulatory networks of miRNAs involved in wheat flag leaves and developing seeds, and provided a foundation for future studies on specific functions of these miRNAs.
Understanding distribution and transport of carbon assimilates and photosynthesis contribution to grain yield in wheat spike is important in assessing the photosynthetic process under stress conditions. In this study, photosynthetic characteristics were evaluated in a pot experiment. Transport of spike photosynthates to grain was demonstrated using 14 C isotope tracer technique. Yield and key enzyme activities of C 3 and C 4 pathways were examined after anthesis in wheat cultivars of different drought resistance. The ear net photosynthetic rate, chlorophyll content of the spike bracts (glume, lemma, and palea), and relative water content slightly decreased under water deficit in drought resistant variety Pubing 143 (Pub) during the grain filling stage, whereas all parameters decreased significantly in drought sensitive variety Zhengyin 1 (Zhe). Grain 14 C-photosynthate distribution rate fell by 3.8% in Pub and increased by 3.9% in Zhe. After harvest, the water-use efficiency of Zhe dropped by 18.7% under water deficit. Rubisco activity in ear organs declined significantly under water deficit, whereas activity of C 4 pathway enzymes was significantly enhanced, especially that of phosphoenolpyruvate carboxylase and NADP-malate dehydrogenase. Water deficit exerted lesser influence on spike photosynthesis in Pub. Ear organs exhibited delayed senescence. Accumulation of photosynthetic carbon assimilates in ear bracts occurred mainly during the early grain filling and photosynthates were transported in the middle of grain filling. C 4 pathway enzymes seem to play an important function in ear photosynthesis. We speculate that the high enzyme activity of the C 4 pathway and the increased capacity of photosynthetic carbon assimilate transport were the reasons for the drought tolerance characteristics of ears. Additional key words:14 C-labelling; harvest index; malic enzyme; spike assimilate transport; Triticum aestivum L.
Background. WRKY proteins, which comprise one of the largest transcription factor (TF) families in the plant kingdom, play crucial roles in plant development and stress responses. Despite several studies on WRKYs in wheat (Triticum aestivum L.), functional annotation information about wheat WRKYs is limited. Results. Here, 171 TaWRKY TFs were identified from the whole wheat genome and compared with proteins from 19 other species representing nine major plant lineages. A phylogenetic analysis, coupled with gene structure analysis and motif determination, divided these TaWRKYs into seven subgroups (Group I, IIa-e, and III). Chromosomal location showed that most TaWRKY genes were enriched on four chromosomes, especially on chromosome 3B. In addition, 85 (49.7%) genes were either tandem (5) or segmental duplication (80), which suggested that though tandem duplication has contributed to the expansion of TaWRKY family, segmental duplication probably played a more pivotal role. Analysis of cis-acting elements revealed putative functions of WRKYs in wheat during development as well as under numerous biotic and abiotic stresses. Finally, the expression of TaWRKY genes in flag leaves, glumes, and lemmas under water-deficit condition were analyzed. Results showed that different TaWRKY genes preferentially express in specific tissue during the grain-filling stage. Conclusion. Our results provide a more extensive insight on WRKY gene family in wheat, and also contribute to the screening of more candidate genes for further investigation on function characterization of WRKYs under various stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.