Given a graph G and a positive integer k, define the Gallai-Ramsey number to be the minimum number of vertices n such that any k-edge coloring of Kn contains either a rainbow (all different colored) triangle or a monochromatic copy of G. In this paper, we consider two classes of unicyclic graphs, the star with an extra edge and the path with a triangle at one end. We provide the 2-color Ramsey numbers for these two classes of graphs and use these to obtain general upper and lower bounds on the Gallai-Ramsey numbers.
A vertex subset S of a graph is called a strong geodetic set if there exists a choice of exactly one geodesic for each pair of vertices of S in such a way that these (|S| 2) geodesics cover all the vertices of graph G. The strong geodetic number of G, denoted by sg(G), is the smallest cardinality of a strong geodetic set. In this paper, we give an upper bound of strong geodetic number of the Cartesian product graphs and study this parameter for some Cartesian product networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.