Iris recognition, the ability to recognize and distinguish individuals by their iris pattern, is the most reliable biometric in terms of recognition and identification performance. However, performance of these systems is affected by poor quality imaging. In this work, we extend previous research efforts on iris quality assessment by analyzing the effect of seven quality factors: defocus blur, motion blur, off-angle, occlusion, specular reflection, lighting, and pixel-counts on the performance of traditional iris recognition system. We have concluded that defocus blur, motion blur, and off-angle are the factors that affect recognition performance the most. We further designed a fully automated iris image quality evaluation block that operates in two steps. First each factor is estimated individually, then the second step involves fusing the estimated factors by using Dempster-Shafer theory approach to evidential reasoning. The designed block is tested on two datasets, CASIA 1.0 and a dataset collected at WVU. Considerable improvement in recognition performance is demonstrated when removing poor quality images evaluated by our quality metric. The upper bound on processing complexity required to evaluate quality of a single image is O(n 2 log n), that of a 2D-Fast Fourier Transform.
Crop traits such as aboveground biomass (AGB), total leaf area (TLA), leaf chlorophyll content (LCC), and thousand kernel weight (TWK) are important indices in maize breeding. How to extract multiple crop traits at the same time is helpful to improve the efficiency of breeding. Compared with digital and multispectral images, the advantages of high spatial and spectral resolution of hyperspectral images derived from unmanned aerial vehicle (UAV) are expected to accurately estimate the similar traits among breeding materials. This study is aimed at exploring the feasibility of estimating AGB, TLA, SPAD value, and TWK using UAV hyperspectral images and at determining the optimal models for facilitating the process of selecting advanced varieties. The successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to screen sensitive bands for the maize traits. Partial least squares (PLS) and random forest (RF) algorithms were used to estimate the maize traits. The results can be summarized as follows: The sensitive bands for various traits were mainly concentrated in the near-red and red-edge regions. The sensitive bands screened by CARS were more abundant than those screened by SPA. For AGB, TLA, and SPAD value, the optimal combination was the CARS-PLS method. Regarding the TWK, the optimal combination was the CARS-RF method. Compared with the model built by RF, the model built by PLS was more stable. This study provides guiding significance and practical value for main trait estimation of maize inbred lines by UAV hyperspectral images at the plot level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.