As a multi hop self-organizing network, wireless sensor network (WSN) has the ability to cooperatively sense, collect and process the information of the sensed objects. The applications of WCN in 5G-based Internet of Vehicles (5G-IoV), using information fusion and intelligent information processing technologies, can obtain more reliable and accurate detection parameters, which has been widely concerned. However, the massive connectivity and information exchange in 5G-IoV pose great challenges to the bandwidth efficiency. In order to overcome these issues in 5G-IoV networks, a performance enhanced scheme based on non-orthogonal multiple access (NOMA) is proposed. In the proposed scheme, different vehicle locations are respectively discussed, i.e., whether in the overlap region of cluster head vehicles (CHVs). In particular, different to conventional works, each receiving node only decodes the desired signal to avoid performance loss provided from the poor channel quality limitation. On the other hand, all CHVs decode-and-forward (DF) new superposition coded signals with new power allocation factors, while that the maximum ratio combining (MRC) is utilized at receivers to further improve the ergodic sum-rate (SR) and probability of conflict. The closed-form expressions of ergodic SR for our proposed scheme are analyzed under the independent Rayleigh fading channels. Numerical results corroborating our theoretical analysis show that the superposition coded signal transmission scheme applied to the proposed NOMA-IoV improves the ergodic SR performance significantly compared with the existing works, especially for the high signal-to-noise (SNR) region.
Cache-enabled networks with multiple access (NOMA) integration have been shown to decrease wireless network traffic congestion and content delivery latency. This work investigates optimal power control in cache-assisted NOMA millimeter-wave (mmWave) vehicular networks, where mmWave channels experience double-Nakagami fading and the mmWave beamforming is subjected to beamsteering errors. We aim to optimize vehicular quality of service while maintaining fairness among vehicles, through the maximization of successful signal decoding probability for paired vehicles. A comprehensive analysis is carried out to understand the decoding success probabilities under various caching scenarios, leading to the development of optimal power allocation strategies for diverse caching conditions. Moreover, an optimal power allocation is proposed for the single-antenna case, for exploiting the cached data as side information to cancel interference. The robustness of our proposed scheme against variations in beamforming orientation is assessed by studying the influence of beamsteering errors. Numerical results demonstrate the effectiveness of the proposed cache-assisted NOMA scheme in enhancing cache utility and NOMA efficiency, while underscoring the performance gains achievable with larger cache sizes.
As a multi hop self-organizing network, wireless sensor network (WSN) has the ability to cooper- atively sense, collect and process the information of the sensed objects. The applications of WCN in 5G-based Internet of V ehicles (5G-IoV), using information fusion and intelligent information processing technologies, can obtain more reliable and accurate detection parameters, which has been widely concerned. However, the massive connectivity and information exchange in 5G-IoV pose great challenges to the bandwidth efficiency. In order to overcome these issues in 5G-IoV networks, a performance enhanced scheme based on non-orthogonal multiple access (NOMA) is proposed. In the proposed scheme, different vehicle locations are respectively discussed, i.e., whether in the overlap region of cluster head vehicles (CHVs). In particular, different to conventional works, each receiving node only decodes the desired signal to avoid performance loss provided from the poor channel quality limitation.On the other hand, all CHVs decode-and-forward (DF) new superposition coded signals with new power allocation factors, while that the maximum ratio combining (MRC) is utilized at receivers to further improve the ergodic sum-rate (SR) and probability of conflict. The closed-form expressions of ergodic SR for our proposed scheme are analyzed under the independent Rayleigh fading channels. Numerical results corroborating our theoretical analysis show that the superposition coded signal transmission scheme applied to the proposed NOMA-IoV improves the ergodic SR performance significantly compared with the existing works, especially for the high signal-to-noise (SNR) region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.