The National Genomics Data Center (NGDC) provides a suite of database resources to support worldwide research activities in both academia and industry. With the rapid advancements in higher-throughput and lower-cost sequencing technologies and accordingly the huge volume of multi-omics data generated at exponential scales and rates, NGDC is continually expanding, updating and enriching its core database resources through big data integration and value-added curation. In the past year, efforts for update have been mainly devoted to BioProject, BioSample, GSA, GWH, GVM, NONCODE, LncBook, EWAS Atlas and IC4R. Newly released resources include three human genome databases (PGG.SNV, PGG.Han and CGVD), eLMSG, EWAS Data Hub, GWAS Atlas, iSheep and PADS Arsenal. In addition, four web services, namely, eGPS Cloud, BIG Search, BIG Submission and BIG SSO, have been significantly improved and enhanced. All of these resources along with their services are publicly accessible at https://bigd.big.ac.cn.
The BIG Data Center at Beijing Institute of Genomics (BIG) of the Chinese Academy of Sciences provides freely open access to a suite of database resources in support of worldwide research activities in both academia and industry. With the vast amounts of omics data generated at ever-greater scales and rates, the BIG Data Center is continually expanding, updating and enriching its core database resources through big-data integration and value-added curation, including BioCode (a repository archiving bioinformatics tool codes), BioProject (a biological project library), BioSample (a biological sample library), Genome Sequence Archive (GSA, a data repository for archiving raw sequence reads), Genome Warehouse (GWH, a centralized resource housing genome-scale data), Genome Variation Map (GVM, a public repository of genome variations), Gene Expression Nebulas (GEN, a database of gene expression profiles based on RNA-Seq data), Methylation Bank (MethBank, an integrated databank of DNA methylomes), and Science Wikis (a series of biological knowledge wikis for community annotations). In addition, three featured web services are provided, viz., BIG Search (search as a service; a scalable inter-domain text search engine), BIG SSO (single sign-on as a service; a user access control system to gain access to multiple independent systems with a single ID and password) and Gsub (submission as a service; a unified submission service for all relevant resources). All of these resources are publicly accessible through the home page of the BIG Data Center at http://bigd.big.ac.cn.
Genotype imputation is a process of estimating missing genotypes from the haplotype or genotype reference panel. It can effectively boost the power of detecting single nucleotide polymorphisms (SNPs) in genome-wide association studies, integrate multi-studies for meta-analysis, and be applied in fine-mapping studies. The performance of genotype imputation is affected by many factors, including software, reference selection, sample size, and SNP density/sequencing coverage. A systematical evaluation of the imputation performance of current popular software will benefit future studies. Here, we evaluate imputation performances of Beagle4.1, IMPUTE2, MACH+Minimac3, and SHAPEIT2+ IMPUTE2 using test samples of East Asian ancestry and references of the 1000 Genomes Project. The result indicated the accuracy of IMPUTE2 (99.18%) is slightly higher than that of the others (Beagle4.1: 98.94%, MACH+Minimac3: 98.51%, and SHAPEIT2+IMPUTE2: 99.08%). To achieve good and stable imputation quality, the minimum requirement of SNP density needs to be > 200/Mb. The imputation accuracies of IMPUTE2 and Beagle4.1 were under the minor influence of the study sample size. The contribution extent of reference to genotype imputation performance relied on software selection. We assessed the imputation performance on SNPs generated by next-generation whole genome sequencing and found that SNP sets detected by sequencing with 15× depth could be mostly got by imputing from the haplotype reference panel of the 1000 Genomes Project based on SNP data detected by sequencing with 4× depth. All of the imputation software had a weaker performance in low minor allele frequency SNP regions because of the bias of reference or software. In the future, more comprehensive reference panels or new algorithm developments may rise up to this challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.