Infection of plum bark necrosis stem pitting associated virus (PBNSPaV) has been reported in many prunus species in several countries, causing significant economic losses. The very small proteins encoded by plant viruses are often overlooked due to their short sequences and uncertain significance. However, numerous studies have indicated that they might play important roles in the pathogenesis of virus infection. The role of small hydrophobic protein P6, encoded by the open reading frame 2 of PBNSPaV, has not been well explored. In this study, we amplified the P6 fragment from a PBNSPaV isolate by RT-PCR using specific primers and found that it is 174 bp long and encodes a protein of approximately 6.3 kD with a transmembrane domain. Subcellular localization analysis of P6 proteins in tobacco leaves showed that P6 localizes in cytomembrane and nuclear membrane. To further clarify the pathogenicity of P6 proteins, a PVX-P6 expression vector was constructed by inserting the p6 fragment into a potato virus X (PVX)-based vector and transformed into Agrobacterium tumefaciens GV3101. Infiltration of N. benthamiana with the PVX vector-transformed A. tumefaciens led to slight mosaic symptoms at 14 days of post-inoculation. Meanwhile, infiltration with the PVX-P6 vector-transformed A. tumefaciens resulted in no significant symptoms. These results demonstrated that heterologous expression of P6 in N. benthamiana could not enhance the pathogenicity of PVX. Our study indicates that p6 may not be a potential pathogenic factor associate with the causing of symptoms, and mode of action of PBNSPaV-P6 protein remain to be further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.