Holmium:YAG lithotripsy varies as pulse energy settings vary. At low pulse energy (0.2 J) less fragmentation and retropulsion occur and small fragments are produced. At high pulse energy (2.0 J) more fragmentation and retropulsion occur with larger fragments. Anti-retropulsion devices produce more efficient lithotripsy, particularly at high pulse energy. Optimal lithotripsy laser dosimetry depends on the desired outcome.
Non-invasive depth-resolved measurement of hemoglobin oxygen saturation (SaO2) levels in discrete blood vessels may have implications for diagnosis and treatment of various pathologies. We introduce a novel Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) for non-invasive depth-resolved measurement of SaO2 levels in a blood vessel phantom. DWP OCT SaO2 is linearly correlated with blood-gas SaO2 measurements. We demonstrate 6.3% precision in SaO2 levels measured a phantom blood vessel using DWP-OCT with 800 and 765 nm excitation wavelengths. Sources of uncertainty in SaO2 levels measured with DWP-OCT are identified and characterized.
Melanoma accounts for 75% of all skin cancer deaths. Pulsed photothermal radiometry (PPTR), optical coherence tomography (OCT) and ultrasound (US) are non-invasive imaging techniques that may be used to measure melanoma thickness, thus, determining surgical margins. We constructed a series of PDMS tissue phantoms simulating melanomas of different thicknesses. PPTR, OCT and US measurements were recorded from PDMS tissue phantoms and results were compared in terms of axial imaging range, axial resolution and imaging time. A Monte Carlo simulation and three-dimensional heat transfer model was constructed to simulate PPTR measurement. Experimental results show that PPTR and US can provide a wide axial imaging range (75 μm-1.7 mm and 120-910 μm respectively) but poor axial resolution (75 and 120 μm respectively) in PDMS tissue phantoms, while OCT has the most superficial axial imaging range (14-450 μm) but highest axial resolution (14 μm). The Monte Carlo simulation and three-dimensional heat transfer model give good agreement with PPTR measurement. PPTR and US are suited to measure thicker melanoma lesions (>400 μm), while OCT is better to measure thin melanoma lesions (<400 μm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.