Chiral edge currents play an important role in characterizing topological matter. In atoms, they have been observed at such a low temperature that the atomic motion can be measured. Here we report the first experimental observation of chiral edge currents in atoms at room temperature. Staggered magnetic fluxes are induced by the spatial phase difference between two standing-wave light fields, which couple atoms to form a momentum-space zigzag superradiance lattice. The chiral edge currents have been measured by comparing the directional superradiant emissions of two timed Dicke states in the lattice. This work paves the way for quantum simulation of topological matter with hot atoms and facilitates the application of topological physics in real devices.
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a threelevel atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.