Aggregation of amyloid-b protein (Ab) is hypothesized to be a seminal neuropathological event inAlzheimer's disease (AD). Recombinant expression and purification of Ab represents a common basis for investigating the molecular mechanisms of amyloid formation and toxicity. Herein, we report a novel high-yield expression and purification method for Ab42 based on fusion with maltose binding protein Furthermore, the aggregates of the recombinant peptide had a strong cytotoxic effect on PC12 cells.The method described here can therefore be used to efficiently express the soluble fusion protein MBPAb42 and obtain high-purity Ab42 peptide, which can be used to understand the molecular mechanism of Ab42 fibrillization and screen new candidate drugs for AD.
β-hydroxybutyric acid is the most sensitive indicator in ketoacidosis detection, and accounts for nearly 78% of the ketone bodies. Diaphorase is commonly used to detect the β-hydroxybutyric acid in clinical diagnosis. However, the extraction of diaphorase from animal myocardium is complex and low-yield, which is not convenient for large-scale production. In this study, a diaphorase from Geobacillus sp. Y4.1MC1 was e ciently heterologous expressed and puri ed in E. coli a yield of 110 mg/L culture. The optimal temperature and pH of this recombinant diaphorase (rDIA) were 55 °C and 6.5, respectively. It was proved that rDIA was a dual acid-and thermo-stable enzyme, and which showed much more accurate detection of β-hydroxybutyric acid than the commercial enzyme. Additionally, we also investigated the molecular interaction of rDIA with the substrate, and the conformation transition in different pH values by using homology modeling and molecular dynamics (MD) simulation. The results showed that 141-161 domain of rDIA played important role in the structure changes and conformations transmission at different pH values. Moreover, it was predicted that F105W, F105R and M186R mutants were able to improve the binding a nity of rDIA, and A2Y, P35F, Q36D, N210L, F211Y mutants were bene t for the stability of rDIA.
β-hydroxybutyric acid is the most sensitive indicator in ketoacidosis detection, and accounts for nearly 78% of the ketone bodies. Diaphorase is commonly used to detect the β-hydroxybutyric acid in clinical diagnosis. However, the extraction of diaphorase from animal myocardium is complex and low-yield, which is not convenient for large-scale production. In this study, a diaphorase from Geobacillus sp. Y4.1MC1 was efficiently heterologous expressed and purified in E. coli a yield of 110 mg/L culture. The optimal temperature and pH of this recombinant diaphorase (rDIA) were 55 °C and 6.5, respectively. It was proved that rDIA was a dual acid- and thermo-stable enzyme, and which showed much more accurate detection of β-hydroxybutyric acid than the commercial enzyme. Additionally, we also investigated the molecular interaction of rDIA with the substrate, and the conformation transition in different pH values by using homology modeling and molecular dynamics (MD) simulation. The results showed that 141-161 domain of rDIA played important role in the structure changes and conformations transmission at different pH values. Moreover, it was predicted that F105W, F105R and M186R mutants were able to improve the binding affinity of rDIA, and A2Y, P35F, Q36D, N210L, F211Y mutants were benefit for the stability of rDIA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.