Digital Twin technology has been widely applied in various industry domains. Modern industrial systems are highly complex consisting of multiple interrelated systems, subsystems and components. During the lifecycle of an industrial system, multiple digital twin models might be created related to different domains and lifecycle phases. The integration of these relevant models is crucial for creating higher-level intelligent systems. The Cognitive Digital Twin (CDT) concept has been proposed to address this challenge by empowering digital twins with augmented semantic capabilities. It aims at identifying the dynamics and interrelationships of virtual models, thus to enhance complexity management capability and to support decision-making during the full system lifecycle. This paper aims to explore the CDT concept and its core elements following a systems engineering approach. A conceptual architecture is designed according to the ISO 42010 standard to support CDT development; and an application framework enabled by knowledge graph is provided to guide the CDT applications. In addition, an enabling tool-chain is proposed corresponding to the framework to facilitate the implementation of CDT. Finally, a case study is conducted, based on simulation experiments as a proof-of-concept.
During the design phase of an aircraft manufacturing system, different industrial scenarios need to be evaluated according to key performance indicators to achieve the optimal system performance. It is a highly complex process involving multidisciplinary stakeholders, various digital tools and protocols. To address the digital discontinuity challenge during this process, this paper proposes a tradespace framework based on semantic technology and Model-Based Systems Engineering. It aims at functionality integration of requirement management, architecture definition, manufacturing system design, solution verification and visualization. An application ontology is developed to integrate assembly system domain knowledge, industrial requirements and system architecture model information. The proposed framework is implemented in a case study to support the fuselage orbital joint process design, which is part of the aircraft Final Assembly Line. A toolchain is presented to support the implementation, which consists of a set of enabling software corresponding to the functional modules of the framework. Different manufacturing system architectures are first designed by industrial system engineers supported by the application ontology stored in a graph database. They are then analyzed through Discrete Event Simulations and 3D simulations. The simulation results are presented through a web-based portal to show the key performance values of each architecture. This study serves as a part of the proof-of-concept of the recently proposed Cognitive Digital Twin concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.