Aeromonas hydrophila is the causative agent of motile Aeromonad septicemia in fish. Previous studies have shown that the myoinositol metabolism is essential for the virulence of this bacterium. IolR is a transcription inhibitor that negatively regulates myoinositol metabolic activity. While in the process of studying the inositol catabolism in A. hydrophila Chinese epidemic strain NJ-35, we incidentally found that ΔiolR mutant exhibited obvious autoaggregation and increased biofilm formation compared to the wild type. The role of surface proteins in A. hydrophila autoaggregation was confirmed by different degradation treatments. Furthermore, calcium promotes the formation of aggregates, which disappear in the presence of the calcium chelator EGTA. Transcriptome analysis, followed by targeted gene deletion, demonstrated that biofilm formation and autoaggregation caused by the inactivation of iolR was due to the increased transcription of a RTX-family adhesion gene, rmpA. Further, IolR was determined to directly regulate the transcription of rmpA. These results indicated that iolR is negatively involved in autoaggregation and biofilm formation in A. hydrophila, and this involvement was associated with its inhibition on the expression of rmpA.
The TonB system is generally considered as an energy transporting device for the absorption of nutrients. Our recent study showed that deletion of this system caused a significantly increased sensitivity of Aeromonas hydrophila to the macrolides erythromycin and roxithromycin, but had no effect on other classes of antibiotics. In this study, we found the sensitivity of ΔtonB123 to all macrolides tested revealed a 8- to 16-fold increase compared with the wild-type (WT) strain, but this increase was not related with iron deprivation caused by tonB123 deletion. Further study demonstrated that the deletion of tonB123 did not damage the integrity of the bacterial membrane but did hinder the function of macrolide efflux. Compared with the WT strain, deletion of macA2B2, one of two ATP-binding cassette (ABC) types of the macrolide efflux pump, enhanced the sensitivity to the same levels as those of ΔtonB123. Interestingly, the deletion of macA2B2 in the ΔtonB123 mutant did not cause further increase in sensitivity to macrolide resistance, indicating that the macrolide resistance afforded by the MacA2B2 pump was completely abrogated by tonB123 deletion. In addition, macA2B2 expression was not altered in the ΔtonB123 mutant, indicating that any influence of TonB on MacA2B2-mediated macrolide resistance was at the pump activity level. In conclusion, inactivation of the TonB system significantly compromises the resistance of A. hydrophila to macrolides, and the mechanism of action is related to the function of MacA2B2-mediated macrolide efflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.