The molecular weight distribution is an important factor that affects the properties of polymers. A control algorithm based on the moment-generating function was proposed to regulate the molecular weight distribution for polymerization processes in this work. The B-spline model was used to approximate the molecular weight distribution, and the weight state space equation of the system was identified by the subspace state space system identification method based on the paired date of B-spline weights and control inputs. Then, a new performance criterion mainly consisting of the moment-generating function was constructed to obtain the optimal control input. The effectiveness of the proposed control method was tested in a styrene polymerization process. The molecular weight distribution of the styrene polymers can be approximated by the B-spline model effectively, and it can also be regulated towards the desired one under the proposed control method.
The Organic Rankine Cycle (ORC) is one kind of appropriate energy recovery techniques for low grade heat sources. Since the mass flow rate and the inlet temperature of heat sources usually experience non-Gaussian fluctuations, a conventional linear quadratic performance criterion cannot characterize the system uncertainties adequately. This paper proposes a new model free control strategy which applies the (h,φ)-entropy criterion to decrease the randomness of controlled ORC systems. In order to calculate the (h,φ)-entropy, the kernel density estimation (KDE) algorithm is used to estimate the probability density function (PDF) of the tracking error. By minimizing the performance criterion mainly consisting of (h,φ)-entropy, a new control algorithm for ORC systems is obtained. The stability of the proposed control system is analyzed. The simulation results show that the ORC system under the proposed control method has smaller standard deviation (STD) and mean squared error (MSE), and reveals less randomness than those of the traditional PID control algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.