S‐graphene quantum dots (GQDs), N‐GQDs, P‐GQDs, and Cl‐GQDs are prepared by a solution chemistry method and further incorporated with ZnxCd1−xSe by one‐step hydrothermal method. In the previous study, ZnxCd1−xSe reached the optimal photoelectric performances at the Zn/Cd ratio of 0.9:0.1, so the Zn0.9Cd0.1Se were combined with doped GQDs (D‐GQDs) to form Zn0.9Cd0.1Se/doped‐GQDs. The influence of GQDs doped with different elements on the photoelectric properties of Zn0.9Cd0.1Se composites is discussed. Compared with pristine Zn0.9Cd0.1Se, Zn0.9Cd0.1Se/Cl‐GQDs, and Zn0.9Cd0.1Se/P‐GQDs can improve the photocurrent response and current intensity, therein, Zn0.9Cd0.1Se/Cl‐GQDs reaches the lowest interfacial charge transfer resistance and the highest photocurrent response of 5.48 × 10−6 A cm−2. Mott–Schottky analysis shows that the fitting slope of Zn0.9Cd0.1Se/Cl‐GQDs composites is significantly lower than that of Zn0.9Cd0.1Se/GQDs with other doped elements. The results indicate that Zn0.9Cd0.1Se/Cl‐GQDs composites has the largest carrier density, which is beneficial to charge conduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.