Silicon nanocrystals with diameters between 2.5 and 8 nm were prepared by pulsed CO2 laser pyrolysis of silane in a gas flow reactor and expanded through a conical nozzle into a high vacuum. Using a fast-spinning molecular-beam chopper, they were size-selectively deposited on dedicated quartz substrates. Finally, the photoluminescence of the silicon nanocrystals and their yield were measured as a function of their size. It was found that the photoluminescence follows very closely the quantum-confinement model. The yield shows a pronounced maximum for sizes between 3 and 4 nm.
Blue luminescent silicon nanocrystals prepared by nanosecond laser ablation and stabilized in electronically compatible spin on glasses Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO 2
We present a newly designed highly sensitive micromechanical sensor devoted to thermodynamic studies involving supported clusters. The thermally sensitive element of the sensor consists of a micromachined silicon cantilever array, onto which a thin metal film is evaporated. Due to the difference between the thermal expansion coefficients of silicon and the metal employed, thermal bending is observed when heat is exchanged with the cantilever. The sensitivity and the response time of the cantilever are studied as a function of the film material (gold or aluminum) and the thickness of the metal film. With our routinely prepared cantilevers, a minimum power of 120 nW is measurable with a submillisecond response time, corresponding to a limit of detection in the femtojoule range. The high sensitivity of the sensor is demonstrated by measuring the heat exchange which occurs during the deposition of clusters on the cantilever. Experimentally, we illustrate the 1,3-butadiene hydrogenation reaction using a cluster model catalysts created by soft-landing palladium clusters onto the cantilever surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.