BSTRACTThe formation of cytoplasmic stress granules and the innate immune response are two distinct cellular stress responses. Our study investigated the involvement of four innate immune proteinsretinoic-acid-inducible gene I (RIG-I, also known as DDX58), melanoma differentiation-associated gene 5 (MDA5, also known as IFIH1), IFN-b promoter stimulator (IPS-1, also known as MAVS) and protein kinase regulated by dsRNA (PKR, also known as EIF2AK2) in the formation of stress granules. Knockdown of IPS-1 or PKR significantly decreased the formation of stress granules induced by double-stranded (ds)RNA. IPS-1 depletion markedly attenuated the phosphorylation of PKR and eIF2a that was triggered by dsRNA, and IPS-1 facilitated the in vitro autophosphorylation of PKR. In IPS-1-depleted cells, the dsRNAmediated dimerization of PKR through its dsRNA-binding domains was significantly abrogated, suggesting that IPS-1 might be involved in PKR dimerization. By co-immunoprecipitation and pulldown assays, our data demonstrate that IPS-1 directly binds to PKR through the IPS-1 caspase activation and recruitment domain (CARD), suggesting that the effect of IPS-1 on the formation of stress granules might be exerted through interacting with PKR and mediating its activation. PKR was recruited into stress granules upon activation, whereas the majority of IPS-1 protein formed clusters on mitochondrial membranes. Our work provides the first evidence that the innate signaling molecule IPS-1 plays an essential role in stress granule formation.
Dengue virus (DENV) utilizes host factors throughout its life cycle. In this study, we identified RNA helicase A (RHA), a member of the DEAD/H helicase family, as an important host factor of DENV. In response to DENV2 infection, nuclear RHA protein was partially redistributed into the cytoplasm. The short interfering RNA-mediated knockdown of RHA significantly reduced the amounts of infectious viral particles in various cells. The RHA knockdown reduced the multistep viral growth of DENV2 and Japanese encephalitis virus but not Zika virus. Further study showed that the absence of RHA resulted in a reduction of both viral RNA and protein levels, and the data obtained from the reporter replicon assay indicated that RHA does not directly promote viral protein synthesis. RHA bound to the DENV RNA and associated with three nonstructural proteins, including NS1, NS2B3, and NS4B. Further study showed that different domains of RHA mediated its interaction with these viral proteins. The expression of RHA or RHA-K417R mutant protein lacking ATPase/helicase activity in RHA-knockdown cells successfully restored DENV2 replication levels, suggesting that the helicase activity of RHA is dispensable for its proviral effect. Overall, our work reveals that RHA is an important factor of DENV and might serve as a target for antiviral agents. IMPORTANCE Dengue, caused by dengue virus, is a rapidly spreading disease, and currently there are no treatments available. Host factors involved in the viral replication of dengue virus are potential antiviral therapeutic targets. Although RHA has been shown to promote the multiplication of several viruses, such as HIV and adenovirus, its role in the flavivirus family, including dengue virus, Japanese encephalitis virus, and emerging Zika virus, remains elusive. The current study revealed that RHA relocalized into the cytoplasm upon DENV infection and associated with viral RNA and nonstructural proteins, implying that RHA was actively engaged in the viral life cycle. We further provide evidence that RHA promoted the viral yields of DENV2 independent of its helicase activity. These findings demonstrated that RHA is a new host factor required for DENV replication and might serve as a target for antiviral drugs.
Tumor mutation burden (TMB) is an independent indicator used to select patients sensitive to immunotherapy. The present study aimed to investigate the clinicopathological and molecular characteristics of patients with hypermutant lung cancer to identify an economical, simple and complementary method for predicting TMB and immunotherapy responses. In total, 1,000 patients with lung cancer were randomly selected, and their samples were submitted to next-generation sequencing, with their TMB status reviewed. The threshold of hypermutation was set to 17.24 mutations (muts)/Mb. The proportion of smokers was higher in the hypermutant cohort (n=67) compared with in the non-hypermutant cohort (n=933; 85.1 vs. 46.6%; P<0.0001). Compared with in the non-hypermutant cohort, the proportion of squamous cell carcinoma cases and small cell lung cancer cases was higher in the hypermutant cohort (22.4 vs. 13.1% and 6.0 vs. 2.6%, respectively). In addition, compared with in the non-hypermutant cohort, mutations in the low-density lipoprotein receptor-related protein 1B were more frequently observed in the hypermutant cohort (67.2 vs. 14.3%; P<0.0001). A similar trend was obtained for all genes tested, except for the EGFR gene. Furthermore, in the hypermutant cohort, the prevalence of microsatellite instability was extremely high (9.0%). The mutation frequency in DNA damage response (DDR) genes was notably higher in the hypermutant cohort, where several DDR-associated genes were enriched, compared with in the non-hypermutant cohort. The enrichment analysis revealed a strong association between mutations in Notch signaling and high TMB. To the best of our knowledge, the present study is the first to comprehensively investigate the clinical and genetic characteristics of patients with hypermutant lung cancer in a Chinese population. The results of the current study suggested that hypermutant lung cancer exerted distinctive clinical and genetic features, which may be used as complementary indicators for screening patients sensitive to immunotherapy.
BackgroundDengue virus (DENV) is found in the tropical and subtropical regions and affects millions of people annually. Currently, no specific vaccine or antiviral treatment against dengue virus is available. Innate immunity has been shown to be important for host resistance to DENV infection. Although protein kinase regulated by double-stranded RNA (PKR) has been found to promote the innate signaling in response to infection by several viruses, its role in the innate response to DENV infection is still unclear. Our study aimed to investigate the role of PKR in DENV-induced innate immune responses.Methodology/Principal FindingsBy RNAi, silencing of PKR significantly enhanced the expression of interferon (IFN)-β in DENV infected human lung epithelial A549 cells. Western blot and immunofluorescence microscopy data showed that PKR knockdown upregulated the activation of innate signaling cascades including p38 and JNK mitogen-activated protein kinases (MAPKs), interferon regulatory factor-3 and NF-κB, following DENV2 infection. Likewise, a negative regulatory effect of PKR on the IFN production was also observed in poly(IC) challenged cells. Moreover, the PKR knockdown-mediated IFN induction was attenuated by RIG-I or IPS-1 silencing. Finally, overexpression of a catalytically inactive PKR mutant (K296R), but not of a mutant lacking dsRNA binding activity (K64E) or the double mutant (K64EK296R), reversed the IFN induction mediated by PKR knockdown, suggesting that the dsRNA binding activity is required for PKR to downregulate IFN production.Conclusions/SignificancePKR acts as a negative regulator of IFN induction triggered by DENVs and poly(IC), and this regulation relies on its dsRNA binding activity. These findings reveal a novel regulatory role for PKR in innate immunity, suggesting that PKR might be a promising target for anti-DENV treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.