A fullerene derivative C9 with anchoring hydroxyl groups on the long side chain is used to modify the surface of SnO2 in planar heterojunction perovskite solar cells, which exhibit high efficiency up to 21.3% with negligible hysteresis and good device stability.
Surface passivation is an effective approach to eliminate defects and thus to achieve efficient perovskite solar cells, while the stability of the passivation effect is a new concern for device stability engineering. Herein, tribenzylphosphine oxide (TBPO) is introduced to stably passivate the perovskite surface. A high efficiency exceeding 22%, with steady‐state efficiency of 21.6%, is achieved, which is among the highest performances for TiO2 planar cells, and the hysteresis is significantly suppressed. Further density functional theory (DFT) calculation reveals that the surface molecule superstructure induced by TBPO intermolecular π–π conjugation, such as the periodic interconnected structure, results in a high stability of TBPO–perovskite coordination and passivation. The passivated cell exhibits significantly improved stability, with sustaining 92% of initial efficiency after 250 h maximum‐power‐point tracking. Therefore, the construction of a stabilized surface passivation in this work represents great progress in the stability engineering of perovskite solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.