Bloom’s syndrome (BS) is an autosomal recessive disease, caused by mutations in the BLM gene. This gene codes for BLM protein, which is a helicase involved in DNA repair. DNA repair is especially important for the development and maturation of the T and B cells. Since BLM is involved in DNA repair, we aimed to study if BLM deficiency affects T and B cell development and especially somatic hypermutation (SHM) and class switch recombination (CSR) processes. Clinical data of six BS patients was collected, and immunoglobulin serum levels were measured at different time points. In addition, we performed immune phenotyping of the B and T cells and analyzed the SHM and CSR in detail by analyzing IGHA and IGHG transcripts using next-generation sequencing. The serum immunoglobulin levels were relatively low, and patients had an increased number of infections. The absolute number of T, B, and NK cells were low but still in the normal range. Remarkably, all BS patients studied had a high percentage (20–80%) of CD4+ and CD8+ effector memory T cells. The process of SHM seems normal; however, the Ig subclass distribution was not normal, since the BS patients had more IGHG1 and IGHG3 transcripts. In conclusion, BS patients have low number of lymphocytes, but the immunodeficiency seems relatively mild since they have no severe or opportunistic infections. Most changes in the B cell development were seen in the CSR process; however, further studies are necessary to elucidate the exact role of BLM in CSR.Electronic supplementary materialThe online version of this article (10.1007/s10875-017-0454-y) contains supplementary material, which is available to authorized users.
α-Amino acid based polyester amides (PEAs) are promising candidates for additive manufacturing (AM), as they unite the flexibility and degradability of polyesters and good thermomechanical properties of polyamides in one structure. Introducing α-amino acids in the PEA structure brings additional advantages such as (i) good cytocompatibility and biodegradability, (ii) providing strong amide bonds, enhancing the hydrogen-bonding network, (iii) the introduction of pendant reactive functional groups, and (iv) providing good cell–polymer interactions. However, the application of α-amino acid based PEAs for AM via fused deposition modeling (FDM), an important manufacturing technique with unique processing characteristics and requirements, is still lacking. With the aim to exploit the combination of these advantages in the creation, design, and function of additively manufactured scaffolds using FDM, we report the structure–function relationship of a series of α-amino acid based PEAs. The PEAs with three different molecular weights were synthesized via the active solution polycondensation, and their performance for AM applications was studied in comparison with a commercial biomedical grade copolymer of l -lactide and glycolide (PLGA). The PEAs, in addition to good thermal stability, showed semicrystalline behavior with proper mechanical properties, which were different depending on their molecular weight and crystallinity. They showed more ductility due to their lower glass transition temperature ( T g ; 18–20 °C) compared with PLGA (57 °C). The rheology studies revealed that the end-capping of PEAs is of high importance for preventing cross-linking and further polymerization during the melt extrusion and for the steadiness and reproducibility of FDM. Furthermore, our data regarding the steady 3D printing performance, good polymer–cell interactions, and low cytotoxicity suggest that α-amino acid based PEAs can be introduced as favorable polymers for future AM applications in tissue engineering. In addition, their ability for formation of bonelike apatite in the simulated body fluid (SBF) indicates their potential for bone tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.